RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ЛИЧНЫЙ КАБИНЕТ
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Нелинейная динам.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Нелинейная динам., 2008, том 4, номер 1, страницы 69–86 (Mi nd221)  

Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)

Нелинейные эволюционные уравнения для описания возмущений в вязко-эластичной трубке

Н. А. Кудряшов, Д. И. Синельщиков, И. Л. Чернявский

Московский инженерно-физический институт

Аннотация: Рассмотрена квазиодномерная модель течения жидкости в вязкоэластичной трубке. Предложена замкнутая система нелинейных уравнений для описания возмущений давления и радиуса при течении жидкости в вязкоэластичной трубке. Для анализа системы использованы техника метода многих масштабов и метод возмущений. Математическая модель исследовалась при больших числах Рейнольдса. В уравнении движения стенки трубки учтена кубическая поправка к закону Гука. Построены семейства нелинейных эволюционныхуравнений для описания возмущений основных характеристик течения. Найдены точные решения некоторых нелинейных эволюционных уравнений.

Ключевые слова: вязкоэластичная трубка, нелинейные эволюционные уравнения, метод многих масштабов, точные решения.

Полный текст: PDF файл (187 kB)

Тип публикации: Статья
УДК:  532.517+539
MSC: 74D10, 35Q35, 34A05
Поступила в редакцию: 30.11.2007

Образец цитирования: Н. А. Кудряшов, Д. И. Синельщиков, И. Л. Чернявский, “Нелинейные эволюционные уравнения для описания возмущений в вязко-эластичной трубке”, Нелинейная динам., 4:1 (2008), 69–86

Цитирование в формате AMSBIB
\RBibitem{KudSinChe08}
\by Н.~А.~Кудряшов, Д.~И.~Синельщиков, И.~Л.~Чернявский
\paper Нелинейные эволюционные уравнения для описания возмущений в вязко-эластичной трубке
\jour Нелинейная динам.
\yr 2008
\vol 4
\issue 1
\pages 69--86
\mathnet{http://mi.mathnet.ru/nd221}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/nd221
  • http://mi.mathnet.ru/rus/nd/v4/i1/p69

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. М. С. Абдель Латиф, “Симметрийный анализ и некоторые новые точные решения модифицированного уравнения Кортевега–де Фриза с переменными коэффициентами, возникающего в артериальной механике”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 11:2 (2011), 42–48  mathnet
    2. Кудряшов Н.А., Рябов П.Н., “Свойства нелинейных волн в активно-диссипативной дисперсионной среде”, Известия Российской академии наук. Механика жидкости и газа, 2011, № 3, 97–105  mathscinet  zmath  elib; Kudryashov N.A., Ryabov P.N., “Properties of nonlinear waves in an actively-dissipative dispersive medium”, Fluid Dynamics, 46:3 (2011), 425–432  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    3. Абдель Латиф Мохамед Сорор, “Численные исследования уединенных волн в наполненных жидкостью упругих трубках”, Естественные науки, 2011, № 2, 188–192  elib
    4. Kudryashov N.A., Kochanov M.B., “Quasi-Exact Solutions of Nonlinear Differential Equations”, Appl. Math. Comput., 219:4 (2012), 1793–1804  crossref  mathscinet  zmath  isi  elib  scopus
    5. Kudryashov N.A., “Quasi-Exact Solutions of the Dissipative Kuramoto-Sivashinsky Equation”, Appl. Math. Comput., 219:17 (2013), 9213–9218  crossref  mathscinet  zmath  isi  elib  scopus
    6. А. М. Барлукова, А. А. Черевко, А. П. Чупахин, “Бегущие волны в одномерной модели гемодинамики”, Прикладная механика и техническая физика, 55:6 (328) (2014), 16–26  mathscinet  zmath  elib; Barlukova A.M., Cherevko A.A., Chupakhin A.P., “Traveling Waves in a One-Dimensional Model of Hemodynamics”, J. Appl. Mech. Tech. Phys., 55:6 (2014), 917–926  crossref  mathscinet  zmath  isi  elib
    7. Г. А. Шапошникова, “О влиянии профиля скорости на свойства осредненных по сечению уравнений для течения жидкости в трубках с гибкими стенками”, Докл. РАН, 457:2 (2014), 175–178  crossref  mathscinet  elib; G. A. Shaposhnikova, “Influence of the velocity profile on the properties of equations averaged over the cross section for the liquid flow in flexible-wall tubes”, Dokl. Phys., 59:7 (2014), 326–329  crossref  isi  elib  scopus
    8. N. A. Kudryashov, “Method of the logistic function for finding analytical solutions of nonlinear differential equations”, Модел. и анализ информ. систем, 22:1 (2015), 23–37  mathnet  mathscinet  elib
    9. Kudryashov N.A., “Painleve Analysis and Exact Solutions of the Fourth-Order Equation For Description of Nonlinear Waves”, Commun. Nonlinear Sci. Numer. Simul., 28:1-3 (2015), 1–9  crossref  mathscinet  isi  elib
  • Нелинейная динамика
    Просмотров:
    Эта страница:248
    Полный текст:95
    Первая стр.:1

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2018