RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2010, Volume 6, Number 3, Pages 573–604 (Mi nd26)  

This article is cited in 3 scientific papers (total in 3 papers)

Billiards with time-dependent boundaries and some their properties

A. Yu. Loskutova, A. B. Ryabovb, A. K. Krasnovaa, O. A. Chichiginaa

a M. V. Lomonosov Moscow State University, Faculty of Physics
b University of Oldenburg

Abstract: Classical systems of statistical mechanics — billiards of different geometry the boundaries of which are pertirbed in time — are considered. Dynamics of particles in such billiards and their statistical properties are described. Fermi acceleration which appears in consequence of the boundary oscillations in billiards of arbitrary shapes is investigated. Main attention is given on the analysis of Lorentz gas with stochastically oscillating scatterers and billiards in the form of stadium with periodically perturbed boundary. It is shown that as a result of Fermi acceleration, superdiffusion in the Lorentz gas takes place. It is found that if the shape of the stadium-type billiard is close to rectangular, then the boundary oscillations lead to a new phenomenon — separation of particles by their velocities, when the particle ensemble with high initial velocities is on averaged accelerated, while for particles with relatively low velocities the acceleration is not observed.

Keywords: billiards, Lorentz gas, superdiffusion, Fermi acceleration, dynamical chaos.

Full text: PDF file (1410 kB)
References: PDF file   HTML file

UDC: 531.19, 517.938
MSC: 37D50, 82C05
Received: 27.09.2010

Citation: A. Yu. Loskutov, A. B. Ryabov, A. K. Krasnova, O. A. Chichigina, “Billiards with time-dependent boundaries and some their properties”, Nelin. Dinam., 6:3 (2010), 573–604

Citation in format AMSBIB
\Bibitem{LosRyaKra10}
\by A.~Yu.~Loskutov, A.~B.~Ryabov, A.~K.~Krasnova, O.~A.~Chichigina
\paper Billiards with time-dependent boundaries and some their properties
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 3
\pages 573--604
\mathnet{http://mi.mathnet.ru/nd26}
\elib{http://elibrary.ru/item.asp?id=15223029}


Linking options:
  • http://mi.mathnet.ru/eng/nd26
  • http://mi.mathnet.ru/eng/nd/v6/i3/p573

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Krasnova A.K., Chichigina O.A., “Fermi Acceleration as a Possible Mechanism of Rapid Diffusion of Gold Clusters on Graphite”, Mosc. Univ. Phys. Bull., 67:1 (2012), 48–53  crossref  mathscinet  adsnasa  isi  elib  elib  scopus
    2. Dubinov A.E., Saikov S.K., Senilov L.A., “Model of the Stabilized Distribution Function for Oscillating Electrons in a Hollow Cathode”, Tech. Phys., 57:9 (2012), 1199–1203  crossref  isi  elib  scopus
    3. Akhmadjanov T., Rakhimov E., Otajanov D., “Particle Dynamics in Corrugated Rectangular Billiard”, Nanosyst.-Phys. Chem. Math., 6:2, SI (2015), 262–267  crossref  isi
  • Нелинейная динамика
    Number of views:
    This page:256
    Full text:74
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019