RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2012, Volume 8, Number 4, Pages 799–813 (Mi nd361)  

This article is cited in 3 scientific papers (total in 3 papers)

Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

Sergey M. Ramodanova, Valentin A. Tenenevb, Dmitrii V. Treschevcd

a Institute of Computer Science, Udmurt State University, Universitetskaya 1, Izhevsk, 426034 Russia
b Izhevsk State Technical University, Studencheskaya 7, Izhevsk, 426069 Russia
c Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina st. 8, Moscow, 119991, Russia
d M. V. Lomonosov Moscow State University, Vorob'evy gory, Moscow, 119899, Russia

Abstract: We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are represented in the form of the Kirchhoff equations. In the case of piecewise continuous controls, the integrals of motion are indicated. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. An optimal control problem for several types of the inputs is then solved using genetic algorithms.

Keywords: perfect fluid, self-propulsion, Flettner rotor

Funding Agency Grant Number
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
НШ-2519.2012.1


Full text: PDF file (719 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 512.77, 517.912
MSC: 70Hxx, 70G65
Received: 01.09.2011
Revised: 24.09.2011

Citation: Sergey M. Ramodanov, Valentin A. Tenenev, Dmitrii V. Treschev, “Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid”, Nelin. Dinam., 8:4 (2012), 799–813

Citation in format AMSBIB
\Bibitem{RamTenTre12}
\by Sergey~M.~Ramodanov, Valentin~A.~Tenenev, Dmitrii~V.~Treschev
\paper Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid
\jour Nelin. Dinam.
\yr 2012
\vol 8
\issue 4
\pages 799--813
\mathnet{http://mi.mathnet.ru/nd361}


Linking options:
  • http://mi.mathnet.ru/eng/nd361
  • http://mi.mathnet.ru/eng/nd/v8/i4/p799

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Kilin, E. V. Vetchanin, “Upravlenie dvizheniem tverdogo tela v zhidkosti s pomoschyu dvukh podvizhnykh mass”, Nelineinaya dinam., 11:4 (2015), 633–645  mathnet
    2. E. V. Vetchanin, A. A. Kilin, “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332  mathnet  crossref  crossref  mathscinet  isi  elib
    3. E. V. Vetchanin, A. A. Kilin, “Upravlenie dvizheniem neuravnoveshennogo tyazhelogo ellipsoida v zhidkosti s pomoschyu rotorov”, Nelineinaya dinam., 12:4 (2016), 663–674  mathnet  crossref  mathscinet  elib
  • Нелинейная динамика
    Number of views:
    This page:179
    Full text:84
    References:43
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018