RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2013, Volume 9, Number 4, Pages 659–670 (Mi nd413)  

The evolution point dipole vortex in a domain with circular boundaries

Konstantin N. Kulika, Anatoly V. Turb, Vladimir V. Yanovskiica

a Institute for Single Crystals of NAS of Ukraine, Lenin Ave. 60, Kharkov, 61001, Ukraine
b Université de Toulouse [UPS], CNRS, Institut de Recherche en Astrophysique et Planétologie, 9 avenue du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
c V. N. Karazin Kharkov National University, Svobody Sq. 4, Kharkov, 61022, Ukraine

Abstract: In this work considered the motion of a point dipole vortex in circular domain occupied by an ideal fluid. The motion equations for a dipole vortex in an domain bounded by solid wall, are obtained. These equations have the Hamiltonian form. Integrability in the quadratures of the motion equations for a point dipole vortex in a circular domain is proved. The character movement vortex is discussed.

Keywords: point dipole vortex, Hamiltonian, motion equations.

Full text: PDF file (246 kB)
References: PDF file   HTML file
UDC: 532.5, 532.511, 532.1-2
MSC: 76M23
Received: 22.10.2013
Revised: 12.12.2013

Citation: Konstantin N. Kulik, Anatoly V. Tur, Vladimir V. Yanovskii, “The evolution point dipole vortex in a domain with circular boundaries”, Nelin. Dinam., 9:4 (2013), 659–670

Citation in format AMSBIB
\Bibitem{KulTouYan13}
\by Konstantin~N.~Kulik, Anatoly~V.~Tur, Vladimir~V.~Yanovskii
\paper The evolution point dipole vortex in a domain with circular boundaries
\jour Nelin. Dinam.
\yr 2013
\vol 9
\issue 4
\pages 659--670
\mathnet{http://mi.mathnet.ru/nd413}


Linking options:
  • http://mi.mathnet.ru/eng/nd413
  • http://mi.mathnet.ru/eng/nd/v9/i4/p659

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Нелинейная динамика
    Number of views:
    This page:174
    Full text:51
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020