RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2013, Volume 9, Number 4, Pages 697–710 (Mi nd415)  

This article is cited in 4 scientific papers (total in 4 papers)

Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers

Alexander V. Rodnikov

Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, Moscow, 105005, Russia

Abstract: A particle relative equilibria near a rigid body in the plane passing through the body axes of precession and of dynamical symmetry are studied in assumption that the body gravitational field can be composed as gravitational field of two conjugate complex masses being on imaginary distance. Using terminology of the Generalized Restricted Circular Problem of Three Bodies, these equilibria are called Coplanar Libration Points (CLP). One can show that CLP set is divided into three subsets dependently on CLPs type of evolution. There are 2 “external” CLPs going from infinity to the rigid body if precession angular velocity goes from zero to infinity, from 2 to 6 “internal” CLPs between axis of precession and axis of dynamical symmetry, and from 0 to 3 “central” CLPs near singular points of gravitational potential. Numerical-analitical algorithm of CLPs coordinates computation is suggested. This algorithm is based on some special trigonometrical transformations of coordinates and parameters.

Keywords: problem of three bodies, libration points, relative equilibrium, rigid body, regular precession.

Full text: PDF file (369 kB)
References: PDF file   HTML file
UDC: 531.36:521.1
MSC: 70K20, 70K42
Received: 23.11.2013
Revised: 12.12.2013

Citation: Alexander V. Rodnikov, “Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers”, Nelin. Dinam., 9:4 (2013), 697–710

Citation in format AMSBIB
\Bibitem{Rod13}
\by Alexander~V.~Rodnikov
\paper Coplanar libration points of the generalized restricted circular problem of three bodies for conjugate complex masses of attracting centers
\jour Nelin. Dinam.
\yr 2013
\vol 9
\issue 4
\pages 697--710
\mathnet{http://mi.mathnet.ru/nd415}


Linking options:
  • http://mi.mathnet.ru/eng/nd415
  • http://mi.mathnet.ru/eng/nd/v9/i4/p697

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. V. Rodnikov, “Treugolnye tochki libratsii obobschennoi ogranichennoi krugovoi zadachi trekh tel v sluchae kompleksno-sopryazhennykh mass prityagivayuschikh tsentrov”, Nelineinaya dinam., 10:2 (2014), 213–222  mathnet
    2. A. V. Rodnikov, “Modelirovanie dinamiki kosmicheskoi stantsii v okrestnosti asteroida”, Mat. modelir. i chisl. metody, 2016, no. 10, 55–68  mathnet
    3. D. V. Balandin, V. I. Nikonov, “Vibration points of rotating “compexified” triangle”, Moscow University Mechanics Bulletin, 71:3 (2016), 51–57  mathnet  crossref  mathscinet  isi
    4. A. V. Rodnikov, “On safe configurations of a natural-artificial space tether system”, Eighth Polyakhov's Reading, AIP Conf. Proc., 1959, ed. E. Kustova, G. Leonov, N. Morosov, M. Yushkov, M. Mekhonoshina, Amer. Inst. Phys., 2018, UNSP 040018  crossref  isi  scopus
  • Нелинейная динамика
    Number of views:
    This page:125
    Full text:41
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020