RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Нелинейная динам.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Нелинейная динам., 2014, том 10, номер 1, страницы 17–33 (Mi nd422)  

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

О топологической классификации диффеоморфизмов на 3-многообразиях с поверхностными двумерными аттракторами и репеллерами

В. З. Гринес, Ю. А. Левченко, О. В. Починка

Нижегородский государственный университет им. Н. И. Лобачевского, 603950, Россия, г. Нижний Новгород, пр. Гагарина, д. 23

Аннотация: Рассматривается класс диффеоморфизмов, заданных на трехмерных многообразиях и удовлетворяющих аксиоме $A$ С. Смейла в предположении, что неблуждающее множество каждого диффеоморфизма состоит из поверхностных двумерных базисных множеств. Исследована взаимосвязь между динамикой такого диффеоморфизма и топологией несущего многообразия. Также установлено, что каждый рассматриваемый диффеоморфизм является $\Omega$-сопряженным модельному диффеоморфизму, заданному на многообразии, являющемся локально тривиальным расслоением над окружностью со слоем тор. При некоторых ограничениях на асимптотическое поведение двумерных инвариантных многообразий точек базисных множеств получена топологическая классификация структурно устойчивых диффеоморфизмов из рассматриваемого класса.

Ключевые слова: диффеоморфизм, базисное множество, топологическая сопряженность, аттрактор, репеллер.

Полный текст: PDF файл (431 kB)
Список литературы: PDF файл   HTML файл
Тип публикации: Статья
УДК: 517.938
MSC: 37E30
Поступила в редакцию: 30.12.2013
Исправленный вариант: 22.01.2014

Образец цитирования: В. З. Гринес, Ю. А. Левченко, О. В. Починка, “О топологической классификации диффеоморфизмов на 3-многообразиях с поверхностными двумерными аттракторами и репеллерами”, Нелинейная динам., 10:1 (2014), 17–33

Цитирование в формате AMSBIB
\RBibitem{GriLevPoc14}
\by В.~З.~Гринес, Ю.~А.~Левченко, О.~В.~Починка
\paper О топологической классификации диффеоморфизмов на 3-многообразиях с поверхностными двумерными аттракторами и репеллерами
\jour Нелинейная динам.
\yr 2014
\vol 10
\issue 1
\pages 17--33
\mathnet{http://mi.mathnet.ru/nd422}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/nd422
  • http://mi.mathnet.ru/rus/nd/v10/i1/p17

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. В. З. Гринес, Е. Я. Гуревич, Е. В. Жужома, С. Х. Зинина, “Гетероклинические кривые диффеоморфизмов Морса–Смейла и сепараторы в магнитном поле плазмы”, Нелинейная динам., 10:4 (2014), 427–438  mathnet
    2. Grines V.Z., Levchenko Yu.A., Medvedev V.S., Pochinka O.V., “On the Dynamical Coherence of Structurally Stable 3-Diffeomorphisms”, Regul. Chaotic Dyn., 19:4 (2014), 506–512  crossref  isi
    3. В. З. Гринес, Е. В. Жужома, О. В. Починка, “Грубые диффеоморфизмы с базисными множествами коразмерности один”, Труды Крымской осенней математической школы-симпозиума, СМФН, 57, РУДН, М., 2015, 5–30  mathnet; V. Z. Grines, Ye. V. Zhuzhoma, O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, Journal of Mathematical Sciences, 225:2 (2017), 195–219  crossref
    4. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, “Dynamical Systems on 2-and 3-manifolds Introduction”, Dynamical Systems on 2- and 3-Manifolds, Developments in Mathematics, 46, Springer, 2016, XVII–XXVI  isi
  • Нелинейная динамика
    Просмотров:
    Эта страница:244
    Полный текст:70
    Литература:46
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019