RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2014, Volume 10, Number 2, Pages 223–236 (Mi nd439)  

This article is cited in 2 scientific papers (total in 2 papers)

On an integrable deformation of the Kowalevski top

Alexander V. Vershilov, Yury A. Grigoryev, Andrey V. Tsiganov

Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia

Abstract: We discuss an application of the Poisson brackets deformation theory to the construction of the integrable perturbations of the given integrable systems. The main examples are the known integrable perturbations of the Kowalevski top for which we get new bi-Hamiltonian structures in the framework of the deformation theory.

Keywords: Poisson geometry, Kowalevski top.

Full text: PDF file (333 kB)
References: PDF file   HTML file
UDC: 523.5
MSC: 70H20, 37K10
Received: 04.06.2014
Revised: 20.06.2014

Citation: Alexander V. Vershilov, Yury A. Grigoryev, Andrey V. Tsiganov, “On an integrable deformation of the Kowalevski top”, Nelin. Dinam., 10:2 (2014), 223–236

Citation in format AMSBIB
\Bibitem{VerGriTsi14}
\by Alexander~V.~Vershilov, Yury~A.~Grigoryev, Andrey~V.~Tsiganov
\paper On an integrable deformation of the Kowalevski top
\jour Nelin. Dinam.
\yr 2014
\vol 10
\issue 2
\pages 223--236
\mathnet{http://mi.mathnet.ru/nd439}


Linking options:
  • http://mi.mathnet.ru/eng/nd439
  • http://mi.mathnet.ru/eng/nd/v10/i2/p223

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317  mathnet
    2. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the KowalevskiSokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
  • Number of views:
    This page:143
    Full text:49
    References:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020