Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2015, Volume 11, Number 1, Pages 127–146 (Mi nd469)  

This article is cited in 2 scientific papers (total in 2 papers)

On the equilibrium position stability of discrete model of filling hose under the action of reactive force

Alexander E. Baikov, Andrey Yu. Mayorov

Moscow Aviation Institute (National Research University), Volokolamskoe Shosse, 4, GSP-3, A-80, Moscow, 125993, Russia

Abstract: The destabilization of the stable equilibrium position of a non-conservative system with three degrees of freedom under the action of a linear viscous friction force is considered. The dissipation is assumed to be completed. The standard methods of the stability theory are using for solving problem. Stability of equilibrium position is studied in the linear approximation. The coefficients of characteristic polynomial are constructed by using Le Verrier's algorithm. Ziegler's effect condition and criterion for the stability are constructed by using perturbation theory. Stability of the three-link rod system's equilibrium position is investigated, when there is no dissipative force. Ziegler's area and criterion for the stability of the equilibrium position of a system with three degrees of freedom, in which the friction forces take small values, are constructed. The influence of large friction forces is investigated. The results of the study may be used for the analysis of stability of a non-conservative system with three degrees of freedom. Also, the three-link rod system may be used as discrete model of filling hose under the action of reactive force.

Keywords: fillling hose, discrete model, three-link rod system, tracking force, dissipative forces, asymptotically stability, Zieglers effect, Zieglers areas, criterion for the stability.

Funding Agency Grant Number
Russian Science Foundation 14-21-00068


Full text: PDF file (394 kB)
References: PDF file   HTML file
UDC: 531.01
MSC: 70E50
Received: 06.12.2014
Revised: 28.01.2015

Citation: Alexander E. Baikov, Andrey Yu. Mayorov, “On the equilibrium position stability of discrete model of filling hose under the action of reactive force”, Nelin. Dinam., 11:1 (2015), 127–146

Citation in format AMSBIB
\Bibitem{BaiMay15}
\by Alexander~E.~Baikov, Andrey~Yu.~Mayorov
\paper On the equilibrium position stability of discrete model of filling hose under the action of reactive force
\jour Nelin. Dinam.
\yr 2015
\vol 11
\issue 1
\pages 127--146
\mathnet{http://mi.mathnet.ru/nd469}
\elib{https://elibrary.ru/item.asp?id=23051493}


Linking options:
  • http://mi.mathnet.ru/eng/nd469
  • http://mi.mathnet.ru/eng/nd/v11/i1/p127

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. Yu. Maiorov, “O destabilizatsii polozheniya ravnovesiya, vyzvannoi lineinymi i kvadratichnymi silami vyazkogo treniya”, Zhurnal SVMO, 18:3 (2016), 49–60  mathnet  elib
    2. P. S. Krasil'nikov, A. Yu. Maiorov, “On the stability of equilibrium of a mechanical system with tracking, potential, and small dissipative forces”, Mech. Sol., 53:2 (2018), S52–S59  crossref  isi  scopus
  • Number of views:
    This page:191
    Full text:74
    References:21

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022