RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2017, Volume 13, Number 1, Pages 117–127 (Mi nd554)  

Original papers

On an integrable system on a plane with an integral of motion of sixth order in momenta

A. V. Tsiganov

Saint-Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, 199034, Russia

Abstract: In the framework of the Jacobi method we obtain a new integrable system on the plane with a natural Hamilton function and a second integral of motion which is a polynomial of sixth order in momenta. The corresponding variables of separation are images of usual parabolic coordinates on the plane after a suitable Bäcklund transformation. We also present separated relations and prove that the corresponding vector field is bi-Hamiltonian.

Keywords: finite-dimensional integrable systems, separation of variables, Bäcklund transformations

Funding Agency Grant Number
Russian Science Foundation 15-11-30007


DOI: https://doi.org/10.20537/nd1701008

Full text: PDF file (315 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 517.9
MSC: 37K35, 53D22, 70H06
Received: 19.10.2016
Accepted:28.12.2016

Citation: A. V. Tsiganov, “On an integrable system on a plane with an integral of motion of sixth order in momenta”, Nelin. Dinam., 13:1 (2017), 117–127

Citation in format AMSBIB
\Bibitem{Tsi17}
\by A.~V.~Tsiganov
\paper On an integrable system on a plane with an integral of motion of sixth order in momenta
\jour Nelin. Dinam.
\yr 2017
\vol 13
\issue 1
\pages 117--127
\mathnet{http://mi.mathnet.ru/nd554}
\crossref{https://doi.org/10.20537/nd1701008}
\elib{http://elibrary.ru/item.asp?id=28841004}


Linking options:
  • http://mi.mathnet.ru/eng/nd554
  • http://mi.mathnet.ru/eng/nd/v13/i1/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Нелинейная динамика
    Number of views:
    This page:86
    Full text:28
    References:16

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019