RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2010, Volume 6, Number 1, Pages 91–105 (Mi nd58)  

This article is cited in 3 scientific papers (total in 3 papers)

To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy

T. M. Mitryakova, O. V. Pochinka

N. I. Lobachevski State University of Nizhni Novgorod

Abstract: In this paper diffeomorphisms on orientable surfaces are considered, whose non-wandering set consists of a finite number of hyperbolic fixed points and the wandering set contains a finite number of heteroclinic orbits of transversal and non-transversal intersections. We investigate substantial class of diffeomorphisms for which it is found complete topological invariant — a scheme consisting of a set of geometrical objects equipped by numerical parametres (moduli of topological conjugacy).

Keywords: orbits of heteroclinic tangency, one-sided tangency, topological conjugacy, moduli of topological conjugacy.

Full text: PDF file (736 kB)
References: PDF file   HTML file
UDC: 517.938
MSC: 37E30
Received: 16.01.2010

Citation: T. M. Mitryakova, O. V. Pochinka, “To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy”, Nelin. Dinam., 6:1 (2010), 91–105

Citation in format AMSBIB
\Bibitem{MitPoc10}
\by T.~M.~Mitryakova, O.~V.~Pochinka
\paper To a question on classification of diffeomorphisms of surfaces with a finite number of moduli of topological conjugacy
\jour Nelin. Dinam.
\yr 2010
\vol 6
\issue 1
\pages 91--105
\mathnet{http://mi.mathnet.ru/nd58}
\elib{http://elibrary.ru/item.asp?id=13411473}


Linking options:
  • http://mi.mathnet.ru/eng/nd58
  • http://mi.mathnet.ru/eng/nd/v6/i1/p91

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. T. M. Mitryakova, O. V. Pochinka, “Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy”, Math. Notes, 93:6 (2013), 890–905  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. V. Z. Grines, S. H. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. T. M. Mitryakova, O. V. Pochinka, “Necessary and sufficient conditions for the topological conjugacy of 3-diffeomorphisms with heteroclinic tangencies”, Trans. Moscow Math. Soc., 77 (2016), 69–86  mathnet  crossref  elib
  • Нелинейная динамика
    Number of views:
    This page:155
    Full text:36
    References:16
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020