RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nelin. Dinam.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelin. Dinam., 2019, Volume 15, Number 3, Pages 327–342 (Mi nd663)  

Mathematical problems of nonlinearity

Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations

G. V. Gorra, D. N. Tkachenkoa, E. K. Shchetininab

a Institute of Applied Mathematics and Mechanics, ul. Rozy Luxemburg 74, Donetsk, 283114 Ukraine
b Kyiv National University of Trade and Economics, ul. Kioto 19, Kyiv, 02156 Ukraine

Abstract: The problem of the motion of a rigid body with a fixed point in a potential force field is considered. A new case of three nonlinear invariant relations of the equations of motion is presented. The properties of Euler angles, Rodrigues – Hamilton parameters, and angular velocity hodographs in the Poinsot method are investigated using an integrated approach in the interpretation of body motion.

Keywords: potential force field, Euler angles, Rodrigues – Hamilton parameters, Poinsot method

DOI: https://doi.org/10.20537/nd190310

Full text: PDF file (275 kB)
References: PDF file   HTML file

Bibliographic databases:

MSC: 70E17, 70E40
Received: 25.04.2019
Accepted:29.07.2019

Citation: G. V. Gorr, D. N. Tkachenko, E. K. Shchetinina, “Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations”, Nelin. Dinam., 15:3 (2019), 327–342

Citation in format AMSBIB
\Bibitem{GorTkaShc19}
\by G. V. Gorr, D. N. Tkachenko, E. K. Shchetinina
\paper Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations
\jour Nelin. Dinam.
\yr 2019
\vol 15
\issue 3
\pages 327--342
\mathnet{http://mi.mathnet.ru/nd663}
\crossref{https://doi.org/10.20537/nd190310}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4021373}


Linking options:
  • http://mi.mathnet.ru/eng/nd663
  • http://mi.mathnet.ru/eng/nd/v15/i3/p327

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Нелинейная динамика
    Number of views:
    This page:11
    Full text:3
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020