|
Mathematical problems of nonlinearity
Vibrational Stability of Periodic Solutions of the Liouville Equations
E. V. Vetchanina, E. A. Mikishaninab a Udmurt State University,
ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Chuvash State University,
Moskovskii prosp. 15, Cheboksary, 428015 Russia
Аннотация:
The dynamics of a body with a fixed point, variable moments of inertia and internal rotors are considered. A stability analysis of permanent rotations and periodic solutions of the system is carried out. In some simplest cases the stability analysis is reduced to investigating the stability of the zero solution of Hill’s equation. It is shown that by periodically changing the moments of inertia it is possible to stabilize unstable permanent rotations of the system. In addition, stable dynamical regimes can lose stability due to a parametric resonance. It is shown that, as the oscillation frequency of the moments of inertia increases, the dynamics of the system becomes close to an integrable one.
Ключевые слова:
Liouville equations, Euler – Poisson equations, Hill’s equation, Mathieu equation, parametric resonance, vibrostabilization, Euler – Poinsot case, Joukowski – Volterra case
Финансовая поддержка |
Номер гранта |
Российский научный фонд  |
18-71-00111 |
This work was supported by the Russian Science Foundation under grant 18-71-00111. |
DOI:
https://doi.org/10.20537/nd190312
Полный текст:
PDF файл (754 kB)
Список литературы:
PDF файл
HTML файл
Реферативные базы данных:
Тип публикации:
Статья
MSC: 70E17, 70J40 Поступила в редакцию: 17.07.2019 Принята в печать:23.09.2019
Образец цитирования:
E. V. Vetchanin, E. A. Mikishanina, “Vibrational Stability of Periodic Solutions of the Liouville Equations”, Нелинейная динам., 15:3 (2019), 351–363
Цитирование в формате AMSBIB
\RBibitem{VetMik19}
\by E. V. Vetchanin, E. A. Mikishanina
\paper Vibrational Stability of Periodic Solutions of the Liouville Equations
\jour Нелинейная динам.
\yr 2019
\vol 15
\issue 3
\pages 351--363
\mathnet{http://mi.mathnet.ru/nd665}
\crossref{https://doi.org/10.20537/nd190312}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4021375}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/nd665 http://mi.mathnet.ru/rus/nd/v15/i3/p351
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
|
Просмотров: |
Эта страница: | 66 | Полный текст: | 9 | Литература: | 4 |
|