Russian Journal of Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Rus. J. Nonlin. Dyn., 2020, Volume 16, Number 4, Pages 651–672 (Mi nd735)  

Mathematical problems of nonlinearity

Cherry Maps with Different Critical Exponents: Bifurcation of Geometry

B. Ndawa Tangue

Institute of Mathematics and Physical Sciences Avakpa, Porto-Novo, 613 Benin

Abstract: We consider order-preserving $C^3$ circle maps with a flat piece, irrational rotation number and critical exponents $(l_1, l_2)$.
We detect a change in the geometry of the system. For $(l_1, l_2) \in [1, 2]^2$ the geometry is degenerate and becomes bounded for $(l_1, l_2) \in [2, \infty)^2 \backslash \{(2, 2)\}$. When the rotation number is of the form $[abab \ldots]$; for some $a, b \in \mathbb{N}^*$, the geometry is bounded for $(l_1, l_2)$ belonging above a curve defined on $]1, +\infty[^2$. As a consequence, we estimate the Hausdorff dimension of the nonwandering set $K_f=\mathcal{S}^1 \backslash \bigcup^\infty_{i=0}f^{-i}(U)$. Precisely, the Hausdorff dimension of this set is equal to zero when the geometry is degenerate and it is strictly positive when the geometry is bounded.

Keywords: circle map, irrational rotation number, flat piece, critical exponent, geometry, Hausdorff dimension

Funding Agency
The author was partially supported by the Centre d’Excellence Africain en Science Mathématiques et Applications (CEA-SMA).


DOI: https://doi.org/10.20537/nd200409

Full text: PDF file (400 kB)
References: PDF file   HTML file

Bibliographic databases:

MSC: 37E10
Received: 01.09.2020
Accepted:27.10.2020

Citation: B. Ndawa Tangue, “Cherry Maps with Different Critical Exponents: Bifurcation of Geometry”, Rus. J. Nonlin. Dyn., 16:4 (2020), 651–672

Citation in format AMSBIB
\Bibitem{Nda20}
\by B.~Ndawa Tangue
\paper Cherry Maps with Different Critical Exponents: Bifurcation of Geometry
\jour Rus. J. Nonlin. Dyn.
\yr 2020
\vol 16
\issue 4
\pages 651--672
\mathnet{http://mi.mathnet.ru/nd735}
\crossref{https://doi.org/10.20537/nd200409}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4198786}


Linking options:
  • http://mi.mathnet.ru/eng/nd735
  • http://mi.mathnet.ru/eng/nd/v16/i4/p651

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Russian Journal of Nonlinear Dynamics
    Number of views:
    This page:33
    Full text:12
    References:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021