RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nuclear Phys. B, 2015, Volume 893, Pages 459–481 (Mi nphb1)  

This article is cited in 7 scientific papers (total in 7 papers)

Zero modes method and form factors in quantum integrable models

S. Pakuliakabc, E. Ragoucyd, N. A. Slavnove

a Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow reg., Russia
b Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow reg., Russia
c Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia
d Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex, France
e Steklov Mathematical Institute, Moscow, Russia

Funding Agency Grant Number
Russian Foundation for Basic Research 14-01-00474-a
14-01-00860-a
13-01-12405-ofi-m2
Agence Nationale de la Recherche ANR SIMI1 2010-BLAN-0120-02
Russian Academy of Sciences - Federal Agency for Scientific Organizations
The work of S.P. was supported in part by RFBR grant 14-01-00474-a. E.R. was supported by ANR Project DIADEMS (Programme Blanc ANR SIMI1 2010-BLAN-0120-02). N.A.S. was supported by the Program of RAS "Nonlinear Dynamics in Mathematics and Physics", RFBR-14-01-00860-a, RFBR-13-01-12405-ofi-m2.


DOI: https://doi.org/10.1016/j.nuclphysb.2015.02.006


Bibliographic databases:

ArXiv: 1412.6037
Document Type: Article
Received: 13.01.2015
Accepted:09.02.2015
Language: English

Linking options:
  • http://mi.mathnet.ru/eng/nphb1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Correlation functions of one-dimensional bosons at low temperature”, J. Stat. Mech. Theory Exp., 2011, P03019 , 25 pp.  crossref  isi  scopus
    2. S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001 , 21 pp., arXiv: 1503.00546  mathnet  crossref  mathscinet  zmath  isi  scopus
    3. O. I. Patu, A. Kluemper, “Thermodynamics, density profiles, and correlation functions of the inhomogeneous one-dimensional spinor Bose gas”, Phys. Rev. A, 92:4 (2015), 043631  crossref  isi  scopus
    4. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “$GL(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063, 20 pp.  mathnet  crossref  mathscinet  elib
    5. Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “$GL(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064, 18 pp.  mathnet  crossref  mathscinet  elib
    6. Samuel Belliard, Rodrigo A. Pimenta, “Slavnov and Gaudin–Korepin Formulas for Models without $\mathrm{U}(1)$ Symmetry: the Twisted XXX Chain”, SIGMA, 11 (2015), 099, 12 pp.  mathnet  crossref
    7. N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Number of views:
    This page:97

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019