RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1997, Issue 4, Pages 50–61 (Mi pa122)  

Linearly invariant families of harmonic locally quasiconformal mappings

J. Godula, V. V. Starkov


Abstract: In [2,3] harmonic locally $K$-quasiconformal families of functions de ned in the unit disc were introduced. In this paper we continue the study of the boundary behaviour of maps form such families. In particular, for functions $f$ from the family we investigate cluster sets $C(e^{i\theta}, f)$ and consider the problem od degenerating of a cluster set to a point.

Full text: PDF file (328 kB)

Bibliographic databases:

UDC: 517.54

Citation: J. Godula, V. V. Starkov, “Linearly invariant families of harmonic locally quasiconformal mappings”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1997, no. 4, 50–61

Citation in format AMSBIB
\Bibitem{GodSta97}
\by J.~Godula, V.~V.~Starkov
\paper Linearly invariant families of harmonic locally quasiconformal mappings
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 1997
\issue 4
\pages 50--61
\mathnet{http://mi.mathnet.ru/pa122}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1635409}
\zmath{https://zbmath.org/?q=an:0927.30012}


Linking options:
  • http://mi.mathnet.ru/eng/pa122
  • http://mi.mathnet.ru/eng/pa/y1997/i4/p50

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Problemy Analiza — Issues of Analysis
    Number of views:
    This page:69
    Full text:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019