RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1997, Issue 4, Pages 105–124 (Mi pa128)  

This article is cited in 2 scientific papers (total in 2 papers)

Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$

S. S. Platonov


Abstract: Let $G$ be a transitive group of transformations of a set $M, \mathcal{F}$ be some locally convex space consisting of complex-valued functions on $M, \pi(g): f(x)\to f(g^{-1}x), f(x)\in \mathcal{F}$ be the quasiregular representation of $G$. A linear subspace $H\subseteq \mathcal{F}$ we call an invariant subspace if $H$ is closed and invariant with respect to the representation $\pi$. In the paper we consider the case when $M$ is $n$-dimensional Euclidean space $R^{n}, G$ is the group of all orientation-preserving isometries. The function spaces are spaces of polynomial growth, for example $\mathcal{F}=S'$ is the space of tempered distributions on $R^{n}$. The main result of the paper is the complele description of invariant subspaces of this function spaces. In particular we obtain the description of irreductible and indecomposable subspaces.

Full text: PDF file (2060 kB)

Bibliographic databases:
UDC: 517.518

Citation: S. S. Platonov, “Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 1997, no. 4, 105–124

Citation in format AMSBIB
\Bibitem{Pla97}
\by S.~S.~Platonov
\paper Invariant subspaces in functional spaces of polynomial growth on $\mathbb{R}^{N}$
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 1997
\issue 4
\pages 105--124
\mathnet{http://mi.mathnet.ru/pa128}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1635433}
\zmath{https://zbmath.org/?q=an:0916.43004}


Linking options:
  • http://mi.mathnet.ru/eng/pa128
  • http://mi.mathnet.ru/eng/pa/y1997/i4/p105

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. S. Platonov, “Invariantnye podprostranstva v funktsionalnykh prostranstvakh medlennogo rosta na svetovom konuse v $R^{3}$”, Trudy PGU. Matematika, 2011, no. 18, 21–60  mathnet  mathscinet
    2. S. S. Platonov, “Invariant subspaces in some function spaces on the light cone in $\mathbb R^3$”, Sb. Math., 203:6 (2012), 864–892  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Problemy Analiza — Issues of Analysis
    Number of views:
    This page:56
    Full text:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020