RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2010, Issue 17, Pages 26–37 (Mi pa24)  

This article is cited in 1 scientific paper (total in 1 paper)

Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке

I. A. Chernov

Institute of Applied Mathematical Research, Karelian Research Centre, RAS, Petrozavodsk

Abstract: We consider the one-dimensional quazi-linear parabolic Neumann boundary value problem: coeffcients of the partial differential equation and right-hand sides of the boundary conditions depend on time, point, and the history of the solution. Convergence of difference approximations to a weak solution to the problem is proved.

Full text: PDF file (297 kB)
References: PDF file   HTML file
UDC: 517.954

Citation: I. A. Chernov, “Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке”, Tr. Petrozavodsk. Gos. Univ. Ser. Mat., 2010, no. 17, 26–37

Citation in format AMSBIB
\Bibitem{Che10}
\by I.~A.~Chernov
\paper Сходимость сеточно-интерполяционных аппроксимаций решения квазилинейной параболической краевой задачи на отрезке
\jour Tr. Petrozavodsk. Gos. Univ. Ser. Mat.
\yr 2010
\issue 17
\pages 26--37
\mathnet{http://mi.mathnet.ru/pa24}
\elib{http://elibrary.ru/item.asp?id=18908416}


Linking options:
  • http://mi.mathnet.ru/eng/pa24
  • http://mi.mathnet.ru/eng/pa/y2010/i17/p26

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. V. Manicheva, I. A. Chernov, “Gradientnaya identifikatsiya evolyutsionnykh setochnykh zadach”, Trudy PGU. Matematika, 2011, no. 18, 13–20  mathnet  mathscinet
  • Problemy Analiza — Issues of Analysis
    Number of views:
    This page:87
    Full text:53
    References:35

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020