RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Anal. Issues Anal., 2019, Volume 8(26), Issue 1, Pages 32–46 (Mi pa256)  

Sobolev-orthonormal system of functions generated by the system of Laguerre functions

R. M. Gadzhimirzaev

Dagestan Scientific Center of RAS, 45, M.Gadzhieva st., Makhachkala, 367025, Russia

Abstract: We consider the system of functions $\lambda_{r,n}^\alpha(x)$ ($r\in\mathbb{N}$, $n=0, 1, 2, \ldots$), orthonormal with respect to the Sobolev-type inner product $\langle f, g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{\infty} f^{(r)}(x)g^{(r)}(x) dx$ and generated by the orthonormal Laguerre functions. The Fourier series in the system $\{\lambda_{r,n}^{\alpha}(x)\}_{k=0}^\infty$ is shown to uniformly converge to the function $f\in W_{L^p}^r$ for $\frac{4}{3}<p<4$, $\alpha\geq0$, $x\in[0, A]$, $0\leq A<\infty$. Recurrence relations are obtained for the system of functions $\lambda_{r,n}^\alpha(x)$. Moreover, we study the asymptotic properties of the functions $\lambda_{1,n}^\alpha(x)$ as $n\rightarrow\infty$ for $0\leq x\leq\omega$, where $\omega$ is a fixed positive real number.

Keywords: Laguerre polynomials, Laguerre functions, inner product of Sobolev type, Sobolev-orthonormal functions, recurrence relations, Fourier series, asymptotic formula.

Funding Agency Grant Number
Russian Foundation for Basic Research 18-31-00477_mol_a
This work was written with the support of the Russian Foundation for Basic Research (grant 18-31-00477_mol_a).


DOI: https://doi.org/10.15393/j3.art.2019.5150

Full text: PDF file (467 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 517.521
MSC: 42C10, 65Q30
Received: 02.11.2018
Revised: 04.02.2019
Accepted:03.02.2019
Language:

Citation: R. M. Gadzhimirzaev, “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. Anal. Issues Anal., 8(26):1 (2019), 32–46

Citation in format AMSBIB
\Bibitem{Gad19}
\by R.~M.~Gadzhimirzaev
\paper Sobolev-orthonormal system of functions generated by the system of Laguerre functions
\jour Probl. Anal. Issues Anal.
\yr 2019
\vol 8(26)
\issue 1
\pages 32--46
\mathnet{http://mi.mathnet.ru/pa256}
\crossref{https://doi.org/10.15393/j3.art.2019.5150}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000459770700003}


Linking options:
  • http://mi.mathnet.ru/eng/pa256
  • http://mi.mathnet.ru/eng/pa/v26/i1/p32

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Problemy Analiza — Issues of Analysis
    Number of views:
    This page:68
    Full text:11
    References:5

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019