RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Пробл. анал. Issues Anal.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Пробл. анал. Issues Anal., 2019, том 8(26), выпуск 1, страницы 32–46 (Mi pa256)  

Sobolev-orthonormal system of functions generated by the system of Laguerre functions

R. M. Gadzhimirzaev

Dagestan Scientific Center of RAS, 45, M.Gadzhieva st., Makhachkala, 367025, Russia

Аннотация: We consider the system of functions $\lambda_{r,n}^\alpha(x)$ ($r\in\mathbb{N}$, $n=0, 1, 2, \ldots$), orthonormal with respect to the Sobolev-type inner product $\langle f, g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(0)g^{(\nu)}(0)+\int_{0}^{\infty} f^{(r)}(x)g^{(r)}(x) dx$ and generated by the orthonormal Laguerre functions. The Fourier series in the system $\{\lambda_{r,n}^{\alpha}(x)\}_{k=0}^\infty$ is shown to uniformly converge to the function $f\in W_{L^p}^r$ for $\frac{4}{3}<p<4$, $\alpha\geq0$, $x\in[0, A]$, $0\leq A<\infty$. Recurrence relations are obtained for the system of functions $\lambda_{r,n}^\alpha(x)$. Moreover, we study the asymptotic properties of the functions $\lambda_{1,n}^\alpha(x)$ as $n\rightarrow\infty$ for $0\leq x\leq\omega$, where $\omega$ is a fixed positive real number.

Ключевые слова: Laguerre polynomials, Laguerre functions, inner product of Sobolev type, Sobolev-orthonormal functions, recurrence relations, Fourier series, asymptotic formula.

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-31-00477_mol_a
This work was written with the support of the Russian Foundation for Basic Research (grant 18-31-00477_mol_a).


DOI: https://doi.org/10.15393/j3.art.2019.5150

Полный текст: PDF файл (467 kB)
Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
УДК: 517.521
MSC: 42C10, 65Q30
Поступила в редакцию: 02.11.2018
Исправленный вариант: 04.02.2019
Принята в печать:03.02.2019
Язык публикации: английский

Образец цитирования: R. M. Gadzhimirzaev, “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Пробл. анал. Issues Anal., 8(26):1 (2019), 32–46

Цитирование в формате AMSBIB
\RBibitem{Gad19}
\by R.~M.~Gadzhimirzaev
\paper Sobolev-orthonormal system of functions generated by the system of Laguerre functions
\jour Пробл. анал. Issues Anal.
\yr 2019
\vol 8(26)
\issue 1
\pages 32--46
\mathnet{http://mi.mathnet.ru/pa256}
\crossref{https://doi.org/10.15393/j3.art.2019.5150}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000459770700003}
\elib{http://elibrary.ru/item.asp?id=37104074}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/pa256
  • http://mi.mathnet.ru/rus/pa/v26/i1/p32

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы анализа — Issues of Analysis
    Просмотров:
    Эта страница:94
    Полный текст:26
    Литература:8
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020