RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Anal. Issues Anal., 2013, Volume 2(20), Issue 2, Pages 21–58 (Mi pa6)  

On a generalization of an inequality of Bohr

B. F. Ivanov

St. Petersburg State Technological University for Plant and Polymers

Abstract: Let $p\in (1, 2], n\ge 1, S\subseteq R^{n}$ and $\Gamma(S, p)$— the set of all functions, $\gamma(t)\in L ^{p}(R ^{n})$ the support of the Fourier transform of which lies in $S$. We obtain the inequality conditions $||\int \limits_{E_t}\gamma(\tau)d\tau|| _{L ^{\infty}(R^n)}\le C||\gamma(\tau)|| _{L ^{p}(R^n)}$, where $t=(t _{1}, t _{2}, …, t _{n})\in R^{n}, E _{t} = \{\tau|\tau=(\tau _{1},\tau _{2},…,\tau _{n})\in R^{n}, \tau_j\in [0,t_j]$, if $ t_j\ge 0$ and $\tau_{j}\in (t_j,0]$, if $\tau_{j}< 0, 1\le j\le n\}, \gamma(\tau)\in \Gamma(S,p)$ and constant $C$ does not depend on $\gamma(t)$. Also were considered some validity conditions on the inequality on non-trivial subsets $\Gamma(S, p)$ in cases, where they were not satisfied on the whole $\Gamma(S, p)$.

Keywords: inequality of Bohr

Full text: PDF file (604 kB)
References: PDF file   HTML file

Bibliographic databases:
UDC: 517
MSC: 26D99
Received: 11.07.2013

Citation: B. F. Ivanov, “On a generalization of an inequality of Bohr”, Probl. Anal. Issues Anal., 2(20):2 (2013), 21–58

Citation in format AMSBIB
\Bibitem{Iva13}
\by B.~F.~Ivanov
\paper On a generalization of an inequality of Bohr
\jour Probl. Anal. Issues Anal.
\yr 2013
\vol 2(20)
\issue 2
\pages 21--58
\mathnet{http://mi.mathnet.ru/pa6}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3168876}
\zmath{https://zbmath.org/?q=an:1292.26050}


Linking options:
  • http://mi.mathnet.ru/eng/pa6
  • http://mi.mathnet.ru/eng/pa/v20/i2/p21

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Problemy Analiza — Issues of Analysis
    Number of views:
    This page:185
    Full text:104
    References:29

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019