RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikl. Diskr. Mat., 2011, Number 3(13), Pages 65–79 (Mi pdm333)  

This article is cited in 5 scientific papers (total in 5 papers)

Applied graph theory

Computational aspects of treewidth for graph

V. V. Bykova

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia

Abstract: The paper gives a brief overview of recent results on the graph treewidth problem. We investigate some of the lower and upper bounds for treewidth, and present algorithmic methods to improve these bounds.

Keywords: graph algorithms, treewidth, partial $k$-tree.

Full text: PDF file (614 kB)
References: PDF file   HTML file

Document Type: Article
UDC: 519.178

Citation: V. V. Bykova, “Computational aspects of treewidth for graph”, Prikl. Diskr. Mat., 2011, no. 3(13), 65–79

Citation in format AMSBIB
\Bibitem{Byk11}
\by V.~V.~Bykova
\paper Computational aspects of treewidth for graph
\jour Prikl. Diskr. Mat.
\yr 2011
\issue 3(13)
\pages 65--79
\mathnet{http://mi.mathnet.ru/pdm333}


Linking options:
  • http://mi.mathnet.ru/eng/pdm333
  • http://mi.mathnet.ru/eng/pdm/y2011/i3/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. V. V. Bykova, “FPT-algoritmy na grafakh ogranichennoi drevovidnoi shiriny”, PDM, 2012, no. 2(16), 65–78  mathnet
    2. V. V. Bykova, “Metody razrabotki FTP-algoritmov na grafakh ogranichennoi drevovidnoi shiriny”, PDM. Prilozhenie, 2012, no. 5, 102–104  mathnet
    3. R. E. Shangin, “Determinirovannyi algoritm resheniya zadachi Vebera dlya $n$-posledovatelnosvyaznoi tsepi”, Diskretn. analiz i issled. oper., 20:5 (2013), 84–96  mathnet  mathscinet
    4. R. E. Shangin, “Konstruktivnye opisaniya $n$-posledovatelnosvyaznykh grafov”, Vladikavk. matem. zhurn., 15:4 (2013), 48–57  mathnet
    5. A. V. Panyukov, R. E. Shangin, “Tochnyi algoritm resheniya diskretnoi zadachi Vebera dlya $k$-dereva”, Diskretn. analiz i issled. oper., 21:3 (2014), 64–75  mathnet  mathscinet
  • Прикладная дискретная математика
    Number of views:
    This page:146
    Full text:64
    References:31
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018