RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikl. Diskr. Mat., 2013, Number 3(21), Pages 11–25 (Mi pdm419)  

This article is cited in 5 scientific papers (total in 5 papers)

Theoretical Foundations of Applied Discrete Mathematics

Distribution properties of sequences produced by filtering generators

O. V. Kamlovskii

LLC "Certification Research Center", Moscow, Russia

Abstract: The distributions of $r$-tuples in output sequences of filtering generators over finite fields are considered. Bounds for the number of a given $r$-tuple occurrences are proved. Also, bounds for cross-correlation coefficients are established, and conditions for stated sequences to be different are got.

Keywords: filter generators, finite fields, linear recurring sequences, additive character sums.

Full text: PDF file (612 kB)
References: PDF file   HTML file
UDC: 519.4

Citation: O. V. Kamlovskii, “Distribution properties of sequences produced by filtering generators”, Prikl. Diskr. Mat., 2013, no. 3(21), 11–25

Citation in format AMSBIB
\Bibitem{Kam13}
\by O.~V.~Kamlovskii
\paper Distribution properties of sequences produced by filtering generators
\jour Prikl. Diskr. Mat.
\yr 2013
\issue 3(21)
\pages 11--25
\mathnet{http://mi.mathnet.ru/pdm419}


Linking options:
  • http://mi.mathnet.ru/eng/pdm419
  • http://mi.mathnet.ru/eng/pdm/y2013/i3/p11

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. A. De La Krus Khimenes, O. V. Kamlovskii, “The sum of modules of Walsh coefficients of Boolean functions”, Discrete Math. Appl., 26:5 (2016), 259–272  mathnet  crossref  crossref  mathscinet  isi  elib
    2. O. V. Kamlovskii, “Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method”, Discrete Math. Appl., 27:4 (2017), 199–211  mathnet  crossref  crossref  mathscinet  isi  elib
    3. O. V. Kamlovskii, “Rasstoyanie mezhdu dvoichnymi predstavleniyami lineinykh rekurrent nad polem $GF(2^k)$ i koltsom $\mathbb{Z}_{2^n}$”, Matem. vopr. kriptogr., 7:1 (2016), 71–82  mathnet  crossref  mathscinet  elib
    4. A. D. Bugrov, “The cross-correlation function of complications of linear recurrent sequences”, Discrete Math. Appl., 28:2 (2018), 65–73  mathnet  crossref  crossref  mathscinet  isi  elib
    5. O. V. Kamlovskii, “Summy modulei koeffitsientov Uolsha–Adamara nekotorykh sbalansirovannykh bulevykh funktsii”, Matem. vopr. kriptogr., 8:4 (2017), 75–98  mathnet  crossref  mathscinet  elib
  • Прикладная дискретная математика
    Number of views:
    This page:158
    Full text:84
    References:21
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019