RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikl. Diskr. Mat., 2019, Number 45, Pages 13–25 (Mi pdm667)  

Theoretical Backgrounds of Applied Discrete Mathematics

On the degree of restrictions of $q$-valued logic functions to linear manifolds

V. G. Ryabov

NP “GST”, Moscow, Russia

Abstract: In case of a finite field $\mathbb{F}_q$, the degree of restricting a $q$-valued logic function in $n$ variables to a $r$-dimensional linear manifold of the vector space $\mathbb{F}_q^n$ is defined as the degree of a polynomial in $r$ variables that represents this restriction. For manifolds of a fixed dimension, the probability of occurrence of restrictions with a degree not higher than the given one is estimated, and the asymptotics of the number of manifolds on which the restrictions are affine is obtained. It is shown that if $n \to \infty$, for almost all $q$-valued logic functions in $n$ variables, the value of the maximum dimension of a linear manifold on which the restriction is affine belongs to the segment $[\lfloor \log_q n+\log_q \log_q n \rfloor, \lceil \log_q n+\log_q \log_q n \rceil]$, while the analogous parameter for the case of fixing variables is in the range $[\lfloor \log_q n \rfloor, \lceil \log_q n \rceil]$.

Keywords: many-valued logic, Boolean function, restriction, linear manifold, degree.

DOI: https://doi.org/10.17223/20710410/45/2

Full text: PDF file (693 kB)
References: PDF file   HTML file

UDC: 519.1,519.7

Citation: V. G. Ryabov, “On the degree of restrictions of $q$-valued logic functions to linear manifolds”, Prikl. Diskr. Mat., 2019, no. 45, 13–25

Citation in format AMSBIB
\Bibitem{Rya19}
\by V.~G.~Ryabov
\paper On the degree of restrictions of $q$-valued logic functions to linear manifolds
\jour Prikl. Diskr. Mat.
\yr 2019
\issue 45
\pages 13--25
\mathnet{http://mi.mathnet.ru/pdm667}
\crossref{https://doi.org/10.17223/20710410/45/2}


Linking options:
  • http://mi.mathnet.ru/eng/pdm667
  • http://mi.mathnet.ru/eng/pdm/y2019/i3/p13

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Прикладная дискретная математика
    Number of views:
    This page:32
    Full text:12
    References:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020