Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikl. Diskr. Mat., 2020, Number 48, Pages 5–15 (Mi pdm700)  

Theoretical Backgrounds of Applied Discrete Mathematics

On the asymptotic normality of the frequencies of letters in a multicyclic sequence

N. M. Mezhennayaa, V. G. Mikhailovb

a Bauman Moscow State Technical University, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The paper presents a multidimensional central limit theorem for frequencies $\xi_{y,T}$ of letters $y$, $y \in \{0,1,\ldots,N-1\}$, $N\ge 2$, in a multicyclic sequence of length $T$ formed by addition letters from $r$, $r \ge 2 $, independent vectors of coprime lengths $n_1,\ldots, n_r$ consisted of independent random variables distributed uniformly on the set $\{0,1,\ldots,N-1\}$: if the lengths of the registers $n_1,\ldots,n_r \to \infty$, the size of the alphabet $N$ is fixed, and $T(\textstyle\sum\limits_{k=1}^r n_k^{-1})^{2(1-1/m)} \to 0$ for some natural number $ m \ge 3$, then the random vector $(T/N)^{-1/2}(\xi_{0,T}-T/N,\ldots,\xi_{N-2,T}-T/N)$ converge in distribution to the $(N-1)$-dimensional normal law with zero mean and non-degenerate covariance matrix. We also obtain an estimate for the rate of convergence in the uniform metric of the one-dimensional distribution function of any of the frequencies $\xi_{y,T}$ to the distribution function of the standard normal law $\Phi$ of the form
$$ |\mathsf{P}\{\xi_{y,T}<\frac{T}{N}+\frac{x}{N}\sqrt{T(N-1)}\}- \Phi(x)|\le C T^{3/4}(\textstyle\sum\limits_{k=1}^r {n_k^{-1}}) $$
for any $y\in\mathcal{A}_N, x \in \mathbb{R},$ where $C>0$ is known constant.

Keywords: multicyclic sequence, central limit theorem, frequencies of letters, Janson's method.

DOI: https://doi.org/10.17223/20710410/48/1

Full text: PDF file (716 kB)
References: PDF file   HTML file

Bibliographic databases:

UDC: 519.214

Citation: N. M. Mezhennaya, V. G. Mikhailov, “On the asymptotic normality of the frequencies of letters in a multicyclic sequence”, Prikl. Diskr. Mat., 2020, no. 48, 5–15

Citation in format AMSBIB
\Bibitem{MezMik20}
\by N.~M.~Mezhennaya, V.~G.~Mikhailov
\paper On the asymptotic normality of the frequencies of~letters in a multicyclic sequence
\jour Prikl. Diskr. Mat.
\yr 2020
\issue 48
\pages 5--15
\mathnet{http://mi.mathnet.ru/pdm700}
\crossref{https://doi.org/10.17223/20710410/48/1}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=4067677}


Linking options:
  • http://mi.mathnet.ru/eng/pdm700
  • http://mi.mathnet.ru/eng/pdm/y2020/i2/p5

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Прикладная дискретная математика
    Number of views:
    This page:110
    Full text:33
    References:4

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021