RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikl. Diskr. Mat. Suppl., 2017, Issue 10, Pages 96–99 (Mi pdma327)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical Methods of Cryptography

On characteristics of local primitive matrices and digraphs

V. M. Fomichevabcd

a Financial University under the Government of the Russian Federation, Moscow
b National Engineering Physics Institute "MEPhI", Moscow
c Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
d "Security Code", Moscow

Abstract: For local primitive $n$-vertex digraphs and matrices of order $n$, the following new characteristics are introduced: a matex is defined as a matrix $(\gamma_{i,j})$ of order $n$, where $\gamma_{i,j}=(i,j)-\exp\Gamma$, $1\leq i,j\leq n$; $k,r$-exporadius $\operatorname{exrd}_{k,r}\Gamma$ is defined as $\min_{I\times J\colon|I|=k, |J|=r}\gamma_{I,J}$, where $\gamma_{I,J}=\max_{(i,j)\in I\times J}\gamma_{i,j}$; $k,r$-expocenter is defined as a set $I\times J$, where $|I|=k$, $|J|=r$, $\gamma_{I,J}=\operatorname{exrd}_{k,r}\Gamma$. An approach to build the perfect $s$-boxes of order $k\times r$ using introduced characteristics is proposed. This approach is based on iterations of $n$-dimensional Boolean vectors set transformations with $n>\max(k,r)$. An exemplification of the function construction for perfect $s$-boxes of order $k\times r$ is presented.

Keywords: local primitive matrix (digraph), local exponent.

Funding Agency Grant Number
Russian Foundation for Basic Research 16-01-00226


DOI: https://doi.org/10.17223/2226308X/10/39

Full text: PDF file (557 kB)
References: PDF file   HTML file

UDC: 519.1

Citation: V. M. Fomichev, “On characteristics of local primitive matrices and digraphs”, Prikl. Diskr. Mat. Suppl., 2017, no. 10, 96–99

Citation in format AMSBIB
\Bibitem{Fom17}
\by V.~M.~Fomichev
\paper On characteristics of local primitive matrices and digraphs
\jour Prikl. Diskr. Mat. Suppl.
\yr 2017
\issue 10
\pages 96--99
\mathnet{http://mi.mathnet.ru/pdma327}
\crossref{https://doi.org/10.17223/2226308X/10/39}


Linking options:
  • http://mi.mathnet.ru/eng/pdma327
  • http://mi.mathnet.ru/eng/pdma/y2017/i10/p96

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Fomichev, “Semigroup and metric characteristics of locally primitive matrices and graphs”, J. Appl. Industr. Math., 12:2 (2018), 243–254  mathnet  crossref  crossref  elib
    2. L. A. Karpova, I. A. Pankratova, “Peremeshivayuschie svoistva nekotorykh klassov podstanovok na $\mathbb{F}_2^n$”, PDM. Prilozhenie, 2019, no. 12, 47–50  mathnet  crossref
  • Prikladnaya Diskretnaya Matematika. Supplement
    Number of views:
    This page:114
    Full text:22
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020