RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikl. Diskr. Mat. Suppl., 2018, Issue 11, Pages 34–39 (Mi pdma375)  

Discrete Functions

Construction of a class of functions on finite fields using linear recurrences over Galois rings

A. D. Bugrov

Moscow

Abstract: The paper deals with a class of functions over a finite field $\mathrm{GF}(q)$ constructed on the basis of linear recurring sequences (LRS) over a ring $\mathrm{GR}(q^n,p^n)$ with a distinguished characteristic polynomial. The order of the arguments of the functions in this class is obtained from the set of LRS over the finite field, and the values of the functions are obtained from the complicated LRS over the ring. When some conditions are met, for the proximity $C(f)$ of the studied functions $f$ in $m$ variables to the class of affine functions, the estimate $C(f)\le q^{(m+n-1)/2}(p^{n-1}-1)(q-1)^{1/2}$ is proved. The power of a class of functions and its automaton implementation are also studied.

Keywords: linear recurring sequences, complication of sequences, finite fields, Galois ring, cross-correlation function, estimation of trigonometric sum.

DOI: https://doi.org/10.17223/2226308X/11/10

Full text: PDF file (928 kB)
References: PDF file   HTML file

UDC: 511.32

Citation: A. D. Bugrov, “Construction of a class of functions on finite fields using linear recurrences over Galois rings”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 34–39

Citation in format AMSBIB
\Bibitem{Bug18}
\by A.~D.~Bugrov
\paper Construction of a~class of functions on finite fields using linear recurrences over Galois rings
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 34--39
\mathnet{http://mi.mathnet.ru/pdma375}
\crossref{https://doi.org/10.17223/2226308X/11/10}


Linking options:
  • http://mi.mathnet.ru/eng/pdma375
  • http://mi.mathnet.ru/eng/pdma/y2018/i11/p34

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Prikladnaya Diskretnaya Matematika. Supplement
    Number of views:
    This page:126
    Full text:25
    References:7

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020