Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


PFMT, 2019, Issue 1(38), Pages 69–71 (Mi pfmt626)  

MATHEMATICS

On the permutability of a Sylow subgroup with Schmidt subgroups of odd order

A. A. Trofimuk, E. V. Zubei

F. Scorina Gomel State University

Abstract: A finite non-nilpotent group $G$ is called a Schmidt group if every proper subgroup of $G$ is nilpotent. In this paper the nonabelian composition factors of a group in which a Sylow subgroup is permutable with Schmidt subgroups of odd order is determined.

Keywords: finite group, solvable group, Schmidt subgroup, Sylow subgroup, permutable subgroups.

Full text: PDF file (313 kB)
References: PDF file   HTML file
UDC: 512.542
Received: 20.12.2018

Citation: A. A. Trofimuk, E. V. Zubei, “On the permutability of a Sylow subgroup with Schmidt subgroups of odd order”, PFMT, 2019, no. 1(38), 69–71

Citation in format AMSBIB
\Bibitem{TroZub19}
\by A.~A.~Trofimuk, E.~V.~Zubei
\paper On the permutability of a Sylow subgroup with Schmidt subgroups of odd order
\jour PFMT
\yr 2019
\issue 1(38)
\pages 69--71
\mathnet{http://mi.mathnet.ru/pfmt626}


Linking options:
  • http://mi.mathnet.ru/eng/pfmt626
  • http://mi.mathnet.ru/eng/pfmt/y2019/i1/p69

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы физики, математики и техники
    Number of views:
    This page:98
    Full text:14
    References:6

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021