Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


PFMT, 2019, Issue 3(40), Pages 107–110 (Mi pfmt665)  

MATHEMATICS

Finite groups with given local sections

B. Hua, J. Huanga, A. N. Skibab

a Jiangsu Normal University, Xuzhou
b F. Scorina Gomel State University

Abstract: A group is called primary if it is a finite $p$-group for some prime $p$. If $\sigma=\{\sigma_i\mid i\in I\}$ is some partition of $\mathbb{P}$, that is, $P=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$, then we say that a finite group $G$ is: $\sigma$-primary if it is a $\sigma_i$-group for some $i$; $\sigma$-nilpotent if $G=G_1\times…\times G_n$ for some $\sigma$-primary groups $G_1,…,G_n$. If $N=N_G(A)$ for some primary non-identity subgroup $A$ of $G$, then we say that $N/A_G$ is a local section of $G$. In this paper, we study a finite group $G$ under hypothesis that all proper local sections of $G$ belong to a saturated hereditary formation $\mathfrak{F}$, and we determine the normal structure of $G$ in the case when all local sections of $G$ are $\sigma$-nilpotent.

Keywords: finite group, hereditary saturated formation, $\mathfrak{F}$-hypercentre, local section, $\sigma$-nilpotent group.

Full text: PDF file (338 kB)
References: PDF file   HTML file
UDC: 512.542
Received: 11.04.2019
Language:

Citation: B. Hu, J. Huang, A. N. Skiba, “Finite groups with given local sections”, PFMT, 2019, no. 3(40), 107–110

Citation in format AMSBIB
\Bibitem{HuHuaSki19}
\by B.~Hu, J.~Huang, A.~N.~Skiba
\paper Finite groups with given local sections
\jour PFMT
\yr 2019
\issue 3(40)
\pages 107--110
\mathnet{http://mi.mathnet.ru/pfmt665}


Linking options:
  • http://mi.mathnet.ru/eng/pfmt665
  • http://mi.mathnet.ru/eng/pfmt/y2019/i3/p107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы физики, математики и техники
    Number of views:
    This page:56
    Full text:14

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021