Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


PFMT, 2020, Issue 1(42), Pages 74–80 (Mi pfmt699)  

MATHEMATICS

Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups

S. V. Balychev, A. S. Vegera

F. Scorina Gomel State University

Abstract: The finite groups that can be represented as a product of pairwise permutable subgroups with formational restrictions on factors and their partial products are studied. In particular, the description of solvable hereditary saturated formations of groups with the property $\mathcal{P}_2$ introduced by B. Amberg, A.S. Kazarin and Hefling is obtained.

Keywords: finite group, product of pairwise permutable subgroups, formation with the $\mathcal{P}_2$ property, formation with the Kegel property, formation with the Shemetkov property.

Full text: PDF file (353 kB)
References: PDF file   HTML file
UDC: 512.542
Received: 08.10.2019

Citation: S. V. Balychev, A. S. Vegera, “Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups”, PFMT, 2020, no. 1(42), 74–80

Citation in format AMSBIB
\Bibitem{BalVeg20}
\by S.~V.~Balychev, A.~S.~Vegera
\paper Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups
\jour PFMT
\yr 2020
\issue 1(42)
\pages 74--80
\mathnet{http://mi.mathnet.ru/pfmt699}


Linking options:
  • http://mi.mathnet.ru/eng/pfmt699
  • http://mi.mathnet.ru/eng/pfmt/y2020/i1/p74

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы физики, математики и техники
    Number of views:
    This page:52
    Full text:20
    References:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022