Problemy Fiziki, Matematiki i Tekhniki (Problems of Physics, Mathematics and Technics)
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



PFMT:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


PFMT, 2011, Issue 1(6), Pages 62–64 (Mi pfmt86)  

MATHEMATICS

On one class of finite supersoluble groups

N. S. Kosenok

Gomel Branch of International Institute of Labor and Social Relations, Gomel

Abstract: The following theorem is proved.
Theorem. If in a non-identity finite group $G$ every primitive subgroup has a prime power index, then $G=[D]H$, where $D$ and $H$ are Hall nilpotent subgroups of $G$ and $D$ coincides with the $\mathfrak{N}$-residual $G^{\mathfrak{N}}$ of $G$.

Keywords: primitive subgroups, finite group, soluble group, supersoluble group, nilpotent group

Full text: PDF file (303 kB)
References: PDF file   HTML file
UDC: 512.542
Received: 19.02.2011

Citation: N. S. Kosenok, “On one class of finite supersoluble groups”, PFMT, 2011, no. 1(6), 62–64

Citation in format AMSBIB
\Bibitem{Kos11}
\by N.~S.~Kosenok
\paper On one class of finite supersoluble groups
\jour PFMT
\yr 2011
\issue 1(6)
\pages 62--64
\mathnet{http://mi.mathnet.ru/pfmt86}


Linking options:
  • http://mi.mathnet.ru/eng/pfmt86
  • http://mi.mathnet.ru/eng/pfmt/y2011/i1/p62

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Проблемы физики, математики и техники
    Number of views:
    This page:112
    Full text:50
    References:20

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021