RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2007, Volume 43, Issue 1, Pages 3–14 (Mi ppi1)  

This article is cited in 46 scientific papers (total in 46 papers)

Information Theory

Single-Mode Quantum Gaussian Channels: Structure and Quantum Capacity

A. S. Holevo

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: A complete classification of one-mode Gaussian channels is given up to canonical unitary equivalence. We also comment on the quantum capacity of these channels. A channel complementary to the quantum channel with additive classical Gaussian noise is described, providing an example of a one-mode Gaussian channel which is neither degradable nor antidegradable.

Full text: PDF file (1023 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2007, 43:1, 1–11

Bibliographic databases:

Document Type: Article
UDC: 621.391.1:519.2
Received: 18.10.2006

Citation: A. S. Holevo, “Single-Mode Quantum Gaussian Channels: Structure and Quantum Capacity”, Probl. Peredachi Inf., 43:1 (2007), 3–14; Problems Inform. Transmission, 43:1 (2007), 1–11

Citation in format AMSBIB
\Bibitem{Hol07}
\by A.~S.~Holevo
\paper Single-Mode Quantum Gaussian Channels: Structure and Quantum Capacity
\jour Probl. Peredachi Inf.
\yr 2007
\vol 43
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/ppi1}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2304059}
\transl
\jour Problems Inform. Transmission
\yr 2007
\vol 43
\issue 1
\pages 1--11
\crossref{https://doi.org/10.1134/S0032946007010012}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255299000001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247618287}


Linking options:
  • http://mi.mathnet.ru/eng/ppi1
  • http://mi.mathnet.ru/eng/ppi/v43/i1/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Caruso F., Vittorio G., “Qubit quantum channels: A characteristic function approach”, Phys. Rev. A, 76:4 (2007), 042331, 10 pp.  crossref  zmath  adsnasa  isi  elib
    2. A. S. Holevo, “Entanglement-Breaking Channels in Infinite Dimensions”, Problems Inform. Transmission, 44:3 (2008), 171–184  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    3. Pirandola S., Braunstein S. L., Lloyd S., “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography”, Phys. Rev. Lett., 101:20 (2008), 200504, 4 pp.  crossref  adsnasa  isi  elib
    4. Cubitt T.S., Ruskai M.B., Smith G., “The structure of degradable quantum channels”, J. Math. Phys., 49:10 (2008), 102104, 27 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Namiki R., Koashi M., Imoto N., “Fidelity criterion for quantum-domain transmission and storage of coherent states beyond the unit-gain constraint”, Phys. Rev. Lett., 101:10 (2008), 100502, 4 pp.  crossref  adsnasa  isi  elib
    6. Caruso F., Eisert J., Giovannetti V., Holevo A.S., “Multi-mode bosonic Gaussian channels”, New J. Phys., 10 (2008), 083030, 33 pp.  crossref  adsnasa  isi  elib
    7. Caruso F., Giovannetti, V., “A new approach to characterize qubit channels”, Int. J. Quantum Inf., 6:1 (2008), 621–626  crossref  zmath  isi  elib
    8. Wolf M.M., “Not-so-normal mode decomposition”, Phys. Rev. Lett., 100:7 (2008), 070505, 4 pp.  crossref  zmath  adsnasa  isi
    9. Zhu Chang Hua, Pei Chang Xing, Quan Dong Xiao, Chen Nan, Yi Yun Hui, “Adaptive continuous variable quantum key distribution based on channel estimation”, Acta Phys. Sinica, 58:4 (2009), 2184–2188  mathscinet  isi
    10. Pirandola S. García-Patrón R., Braunstein S.L., Lloyd S., “Direct and Reverse Secret-Key Capacities of a Quantum Channel”, Phys. Rev. Lett., 102:5 (2009), 050503, 4 pp.  crossref  mathscinet  adsnasa  isi  elib
    11. Pirandola S., Braunstein S.L., Lloyd S., “On the Security and Degradability of Gaussian Channels”, Theory of Quantum Computation, Communication, and Cryptography, Lecture Notes in Computer Science, 5905, 2009, 47–55  crossref  mathscinet  isi
    12. Namiki R., Koashi M., Imoto N., “Fidelity criterion for quantum-domain continuous variable channels”, Quantum Communication, Measurement and Computing (Qcmc), AIP Conference Proceedings, 1110, 2009, 131–134  crossref  zmath  adsnasa  isi
    13. Giovannetti V., Holevo A.S., Lloyd S., Maccone L., “Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results”, J. Phys. A, 43:41 (2010), 415305, 10 pp.  crossref  mathscinet  zmath  isi  elib
    14. Lupo C., Mancini S., “Transitional behavior of quantum Gaussian memory channels”, Phys. Rev. A, 81:5 (2010), 052314, 8 pp.  crossref  adsnasa  isi  elib
    15. Andersen U.L., Leuchs G., Silberhorn Ch., “Continuous-variable quantum information processing”, Laser & Photonics Reviews, 4:3 (2010), 337–354  crossref  isi
    16. Lupo C., Pirandola S., Aniello P., Mancini S., “On the classical capacity of quantum Gaussian channels”, Phys. Scripta, T143 (2011), 014016  crossref  adsnasa  isi
    17. Holevo A.S., “The Entropy Gain of Quantum Channels”, 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), 2011, 289–292  crossref  isi
    18. Ivan J.S., Sabapathy K.K., Simon R., “Operator-sum representation for bosonic Gaussian channels”, Phys Rev A, 84:4 (2011), 042311  crossref  adsnasa  isi  elib
    19. A. S. Holevo, “Entropy gain and the Choi–Jamiolkowski correspondence for infinite-dimensional quantum evolutions”, Theoret. and Math. Phys., 166:1 (2011), 123–138  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    20. Bowles P., Guta M., Adesso G., “Asymptotically Optimal Quantum Channel Reversal for Qudit Ensembles and Multimode Gaussian States”, New J. Phys., 14 (2012), 113041  crossref  mathscinet  isi  elib
    21. Pilyavets O.V., Lupo C., Mancini S., “Methods for Estimating Capacities and Rates of Gaussian Quantum Channels”, IEEE Trans. Inf. Theory, 58:9 (2012), 6126–6164  crossref  mathscinet  isi  elib
    22. Sun M., Peng X., Shen Yu., Guo H., “Security of a New Two-Way Continuous-Variable Quantum Key Distribution Protocol”, Int. J. Quantum Inf., 10:5 (2012), 1250059  crossref  mathscinet  isi  elib
    23. Lupo C., Giovannetti V., Pirandola S., Mancini S., Lloyd S., “Capacities of Linear Quantum Optical Systems”, Phys. Rev. A, 85:6 (2012), 062314  crossref  adsnasa  isi  elib
    24. Weedbrook Ch., Pirandola S., Garcia-Patron R., Cerf N.J., Ralph T.C., Shapiro J.H., Lloyd S., “Gaussian Quantum Information”, Rev. Mod. Phys., 84:2 (2012), 621–669  crossref  adsnasa  isi  elib
    25. Holevo A.S. Giovannetti V., “Quantum Channels and their Entropic Characteristics”, Rep. Prog. Phys., 75:4 (2012), 046001  crossref  mathscinet  adsnasa  isi  elib
    26. Shirokov M.E., “Reversibility of a Quantum Channel: General Conditions and their Applications to Bosonic Linear Channels”, J. Math. Phys., 54:11 (2013), 112201  crossref  mathscinet  zmath  isi  elib
    27. Ivan J.S. Sabapathy K.K. Simon R., “Nonclassicality Breaking Is the Same as Entanglement Breaking for Bosonic Gaussian Channels”, Phys. Rev. A, 88:3 (2013), 032302  crossref  isi  elib
    28. Schaefer J. Karpov E. Garcia-Patron R. Pilyavets O.V. Cerf N.J., “Equivalence Relations for the Classical Capacity of Single-Mode Gaussian Quantum Channels”, Phys. Rev. Lett., 111:3 (2013), 030503  crossref  isi
    29. Sun M. Peng X. Guo H., “An Improved Two-Way Continuous-Variable Quantum Key Distribution Protocol with Added Noise in Homodyne Detection”, J. Phys. B-At. Mol. Opt. Phys., 46:8 (2013), 085501  crossref  isi  elib
    30. Caruso F. Giovannetti V. Lupo C. Mancini S., “Quantum Channels and Memory Effects”, Rev. Mod. Phys., 86:4 (2014), 1203–1259  crossref  isi  elib
    31. Namiki R. Gittsovich O. Guha S. Luetkenhaus N., “Gaussian-Only Regenerative Stations Cannot Act as Quantum Repeaters”, Phys. Rev. A, 90:6 (2014), 062316  crossref  mathscinet  isi  elib
    32. Pirandola S., Spedalieri G., Braunstein S.L., Cerf N.J., Lloyd S., “Optimality of Gaussian Discord”, Phys. Rev. Lett., 113:14 (2014), 140405  crossref  isi  elib
    33. Giovannetti V. Garcia-Patron R. Cerf N.J. Holevo A.S., “Ultimate Classical Communication Rates of Quantum Optical Channels”, Nat. Photonics, 8:10 (2014), 796–800  crossref  isi  elib
    34. Filippov S.N. Ziman M., “Entanglement Sensitivity To Signal Attenuation and Amplification”, Phys. Rev. A, 90:1 (2014), 010301  crossref  isi  elib
    35. Torre G., Roga W., Illuminati F., “Non-Markovianity of Gaussian Channels”, Phys. Rev. Lett., 115:7 (2015), 070401  crossref  mathscinet  isi  elib
    36. Bradler K., Adami Ch., “Black Holes as Bosonic Gaussian Channels”, Phys. Rev. D, 92:2 (2015), 025030  crossref  isi  elib
    37. De Palma G., Mari A., Giovannetti V., Holevo A.S., “Normal Form Decomposition For Gaussian-To-Gaussian Superoperators”, J. Math. Phys., 56:5 (2015), 052202  crossref  mathscinet  zmath  isi
    38. Bradler K., “Coherent Information of One-Mode Gaussian Channels-the General Case of Non-Zero Added Classical Noise”, J. Phys. A-Math. Theor., 48:12 (2015), 125301  crossref  mathscinet  zmath  isi  elib
    39. Crann J., Kribs D.W., Levene R.H., Todorov I.G., “Private Algebras in Quantum Information and Infinite-Dimensional Complementarity”, J. Math. Phys., 57:1, SI (2016), 015208  crossref  mathscinet  zmath  isi  elib
    40. A. S. Kholevo, “On the classical capacity of a channel with stationary quantum Gaussian noise”, Theory Probab. Appl., 62:4 (2018), 534–551  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    41. Volkoff T.J., “Maximal Trace Distance Between Isoenergetic Bosonic Gaussian States”, J. Math. Phys., 58:12 (2017), 122202  crossref  mathscinet  zmath  isi  scopus
    42. Ahmadi M., Wu Ya.-D., Sanders B.C., “Relativistic (2,3)-Threshold Quantum Secret Sharing”, Phys. Rev. D, 96:6 (2017), 065018  crossref  isi  scopus
    43. Lacerda F., Renes J.M., Scholz V.B., “Coherent-State Constellations and Polar Codes For Thermal Gaussian Channels”, Phys. Rev. A, 95:6 (2017), 062343  crossref  isi  scopus
    44. De Palma G., Trevisan D., Giovannetti V., “Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels”, Phys. Rev. Lett., 118:16 (2017), 160503  crossref  mathscinet  isi  scopus
    45. Shang T., Li K., Liu J.-w., “Continuous-Variable Quantum Network Coding For Coherent States”, Quantum Inf. Process., 16:4 (2017), UNSP 107  crossref  mathscinet  isi  scopus
    46. Idel M., Konig R., “On Quantum Additive Gaussian Noise Channels”, Quantum Inform. Comput., 17:3-4 (2017), 283–302  mathscinet  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:505
    Full text:129
    References:45
    First page:10

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019