RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2005, Volume 41, Issue 3, Pages 3–16 (Mi ppi102)  

This article is cited in 2 scientific papers (total in 2 papers)

Information Theory

Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel Error Probabilities

R. D. Dodunekovaa, E. Nikolovab

a Department of Mathematical Sciences, Chalmers University of Technology and the University of Göteborg
b Burgas Free University

Abstract: The performance of a linear error-detecting code in a symmetric memoryless channel is characterized by its probability of undetected error, which is a function of the channel symbol error probability, involving basic parameters of a code and its weight distribution. However, the code weight distribution is known for relatively few codes since its computation is an NP-hard problem. It should therefore be useful to have criteria for properness and goodness in error detection that do not involve the code weight distribution. In this work we give two such criteria. We show that a binary linear code $C$ of length $n$ and its dual code $C^\perp$ of minimum code distance $d^\perp$ are proper for error detection whenever $d^\perp\geqslant\lfloor n/2\rfloor+1$, and that $C$ is proper in the interval $[(n+1-2d^\perp)/(n-d^\perp),1/2]$ whenever $\lceil n/3\rceil+1\leqslant d^\perp\leqslant\lfloor n/2\rfloor$. We also provide examples, mostly of Griesmer codes and their duals, that satisfy the above conditions.

Full text: PDF file (1125 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2005, 41:3, 187–198

Bibliographic databases:

UDC: 621.391.1:519.2
Received: 24.08.2004
Revised: 21.02.2005

Citation: R. D. Dodunekova, E. Nikolova, “Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel Error Probabilities”, Probl. Peredachi Inf., 41:3 (2005), 3–16; Problems Inform. Transmission, 41:3 (2005), 187–198

Citation in format AMSBIB
\Bibitem{DodNik05}
\by R.~D.~Dodunekova, E.~Nikolova
\paper Sufficient Conditions for Monotonicity of the Undetected
Error Probability for Large Channel Error Probabilities
\jour Probl. Peredachi Inf.
\yr 2005
\vol 41
\issue 3
\pages 3--16
\mathnet{http://mi.mathnet.ru/ppi102}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2163846}
\zmath{https://zbmath.org/?q=an:1104.94010}
\transl
\jour Problems Inform. Transmission
\yr 2005
\vol 41
\issue 3
\pages 187--198
\crossref{https://doi.org/10.1007/s11122-005-0023-5}


Linking options:
  • http://mi.mathnet.ru/eng/ppi102
  • http://mi.mathnet.ru/eng/ppi/v41/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Franekova M., Rastocny K., “Problems of Safety Codes Evaluation in Practical Applications”, Transport System Telematics, Communications in Computer and Information Science, 104, 2010, 232–242  crossref  adsnasa  isi
    2. Davydov A.A. Marcugini S. Pambianco F., “New Results on Binary Codes Obtained By Doubling Construction”, Cybern. Inf. Technol., 18:5, SI (2018), 63–76  crossref  mathscinet  isi  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:515
    Full text:104
    References:28

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020