RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find



Search through the site:
Find



Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 1974, Volume 10, Issue 3, Pages 30–35 (Mi ppi1039)  

This article is cited in 4 scientific papers (total in 4 papers)

Information Theory


PDF version     HTML version

Laws of Information Conservation (Nongrowth) and Aspects of the Foundation of Probability Theory

L. A. Levin


Abstract: A new alternative definition is given for the algorithmic quantity of information defined by Kolmogorov. The nongrowth of this quantity is proved for random and certain other processes, The established properties are used to investigate problems related to the approach of [A. N. Kolmogorov, Probl. Peredachi Inf., 1965, vol. 1, no. 1, pp. 3–7; P. Martin-Lóf, Inf. Control, 1966, vol. 9, no. 6, pp. 602–619] with bearing on the foundation of probability theory.

UDC: 621.391.1, 519

Received: 09.01.1974

Citation: L. A. Levin, “Laws of Information Conservation (Nongrowth) and Aspects of the Foundation of Probability Theory”, Probl. Peredachi Inf., 10:3 (1974), 30–35

Citation in format AMSBIB
\Bibitem{Lev74}
\by L.~A.~Levin
\paper Laws of Information Conservation (Nongrowth) and Aspects of the Foundation of Probability Theory
\jour Probl. Peredachi Inf.
\yr 1974
\vol 10
\issue 3
\pages 30--35
\mathnet{http://mi.mathnet.ru/ppi1039}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=469513}
\zmath{http://zbmath.org/?q=an:0312.94007}
\transl
\jour Problems Inform. Transmission
\yr 1974
\vol 10
\issue 3
\pages 206--210


Linking options:
  • http://mi.mathnet.ru/eng/ppi1039
  • http://mi.mathnet.ru/eng/ppi/v10/i3/p30

    Full text (in Russian): PDF file (858 kB)

    English version:
    Problems of Information Transmission, 1974, 10:3, 206–210

    Review databases:

    SHARE: VKontakte.ru FaceBook Twitter Ya.ru Mail.ru Liveinternet Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. П. Витаньи, М. Ли, “Колмогоровская сложность: двадцать лет спустя”, УМН, 43:6(264) (1988), 129–166  mathnet  mathscinet  zmath
    2. В. А. Успенский, А. Л. Семëнов, А. Х. Шень, “Может ли (индивидуальная) последовательность нулей и единиц быть случайной?”, УМН, 45:1(271) (1990), 105–162  mathnet  mathscinet  zmath  adsnasa; V. A. Uspenskii, A. L. Semenov, A. Kh. Shen', “Can an individual sequence of zeros and ones be random?”, Russian Math. Surveys, 45:1 (1990), 121–189  crossref
    3. Vitanyi P.M.B., “Information Distance in Multiples”, IEEE Trans Inform Theory, 57:4 (2011), 2451–2456  crossref
    4. Uspensky V.A., V'yugin V.V., “Development of the algorithmic information theory in Russia”, Journal of Communications Technology and Electronics, 56:6 (2011), 739–747  crossref
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:956
    Full text:225
    First page:3

     
    Contact us:
     Terms of Use  Registration © Steklov Mathematical Institute RAS, 2014