RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2007, Volume 43, Issue 2, Pages 65–73 (Mi ppi12)  

This article is cited in 1 scientific paper (total in 1 paper)

Coding Theory

Some High Rate Linear Codes over $GF(5)$ and $GF(7)$

R. N. Daskalov

Technical University of Gabrovo

Abstract: Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$, and with minimum Hamming distance $d$ over $GF(q)$. The ratio $R=k/n$ is called the rate of a code. In this paper, $[62,53,6]_5$, $[62,48,8]_5$, $[71,56,8]_5$, $[124,113,6]_5$, $[43,36,6]_7$, $[33,23,7]_7$, and $[27,18,7]_7$ high-rate codes and new codes with parameters $[42,14,19]_5$, $[42,15,18]_5$, $[48,13,24]_5$, $[52,12,28]_5$, $[71,15,38]_5$, $[71,16,36]_5$, $[72,12,41]_5$, $[78,10,50]_5$, $[88,11,54]_5$, $[88,13,51]_5$, $[124,14,77]_5$, $[32,12,15]_7$, $[32,10,17]_7$, $[36,10,20]_7$, and $[48,10,29]_7$ are constructed. The codes with parameters $[62,53,6]_5$ and $[43,36,6]_7$ are optimal.

Full text: PDF file (957 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2007, 43:2, 124–131

Bibliographic databases:

UDC: 621.391.15
Received: 21.12.2006

Citation: R. N. Daskalov, “Some High Rate Linear Codes over $GF(5)$ and $GF(7)$”, Probl. Peredachi Inf., 43:2 (2007), 65–73; Problems Inform. Transmission, 43:2 (2007), 124–131

Citation in format AMSBIB
\Bibitem{Das07}
\by R.~N.~Daskalov
\paper Some High Rate Linear Codes over $GF(5)$ and $GF(7)$
\jour Probl. Peredachi Inf.
\yr 2007
\vol 43
\issue 2
\pages 65--73
\mathnet{http://mi.mathnet.ru/ppi12}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2333857}
\zmath{https://zbmath.org/?q=an:1140.94377}
\transl
\jour Problems Inform. Transmission
\yr 2007
\vol 43
\issue 2
\pages 124--131
\crossref{https://doi.org/10.1134/S0032946007020056}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000255782600005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547395765}


Linking options:
  • http://mi.mathnet.ru/eng/ppi12
  • http://mi.mathnet.ru/eng/ppi/v43/i2/p65

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Ackerman R., Aydin N., “New quinary linear codes from quasi-twisted codes and their duals”, Appl. Math. Lett., 24:4 (2011), 512–515  crossref  mathscinet  zmath  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:270
    Full text:85
    References:18
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020