RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Пробл. передачи информ.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Пробл. передачи информ., 2008, том 44, выпуск 3, страницы 3–18 (Mi ppi1276)  

Эта публикация цитируется в 61 научных статьях (всего в 61 статьях)

Теория информации

Каналы, разрушающие сцепленность, в бесконечных размерностях

А. С. Холево

Математический институт им. В. А. Стеклова РАН

Аннотация: В первой части этой статьи дается представление для каналов, разрушающих сцепленность, в сепарабельном гильбертовом пространстве, которое обобщает “разложение Крауса с операторами ранга 1”, и используется для описания комплементарных каналов. Отмечается также, что когерентная информация для антидеградируемого канала всегда неположительна. Во второй части дано необходимое и достаточное условие разрушения сцепленности для общего квантового гауссовского канала. Применение этого условия к одномодовым каналам дает несколько новых случаев, для которых гипотеза аддитивности пропускной способности выполняется в наиболее сильной форме.

Полный текст: PDF файл (899 kB)
Список литературы: PDF файл   HTML файл

Англоязычная версия:
Problems of Information Transmission, 2008, 44:3, 171–184

Реферативные базы данных:

Тип публикации: Статья
УДК: 621.391.1:519.2
Поступила в редакцию: 22.02.2008
После переработки: 25.04.2008

Образец цитирования: А. С. Холево, “Каналы, разрушающие сцепленность, в бесконечных размерностях”, Пробл. передачи информ., 44:3 (2008), 3–18; Problems Inform. Transmission, 44:3 (2008), 171–184

Цитирование в формате AMSBIB
\RBibitem{Hol08}
\by А.~С.~Холево
\paper Каналы, разрушающие сцепленность, в~бесконечных размерностях
\jour Пробл. передачи информ.
\yr 2008
\vol 44
\issue 3
\pages 3--18
\mathnet{http://mi.mathnet.ru/ppi1276}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2467417}
\zmath{https://zbmath.org/?q=an:1173.81304}
\elib{http://elibrary.ru/item.asp?id=11705234}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 3
\pages 171--184
\crossref{https://doi.org/10.1134/S0032946008030010}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000260150400001}
\elib{http://elibrary.ru/item.asp?id=13593502}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54449101075}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/ppi1276
  • http://mi.mathnet.ru/rus/ppi/v44/i3/p3

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Gharibian S., “Strong NP-hardness of the quantum separability problem”, Quantum Inf. Comput., 10:3-4 (2010), 343–360  mathscinet  zmath  isi
    2. Giovannetti V., Holevo A.S., Lloyd S., Maccone L., “Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results”, J. Phys. A, 43:41 (2010), 415305, 10 pp.  crossref  mathscinet  zmath  isi  elib
    3. А. С. Холево, “Прирост энтропии и соответствие Чоя–Ямилковского для бесконечномерных квантовых эволюций”, ТМФ, 166:1 (2011), 142–159  mathnet  crossref  mathscinet  adsnasa; A. S. Holevo, “Entropy gain and the Choi–Jamiolkowski correspondence for infinite-dimensional quantum evolutions”, Theoret. and Math. Phys., 166:1 (2011), 123–138  crossref  isi
    4. Augusiak R., Bae J., Czekaj Ł., Lewenstein M., “On structural physical approximations and entanglement breaking maps”, J. Phys. A, 44:18 (2011), 185308, 21 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Namiki R., “Simple proof of the quantum benchmark fidelity for continuous-variable quantum devices”, Phys. Rev. A, 83:4 (2011), 042323, 4 pp.  crossref  adsnasa  isi
    6. Namiki R., “Fundamental quantum limits on phase-insensitive linear amplification and phase conjugation in a practical framework”, Phys. Rev. A, 83:4 (2011), 040302, 4 pp.  crossref  adsnasa  isi
    7. М. Е. Широков, “О непрерывности выходной энтропии положительных отображений”, Матем. сб., 202:10 (2011), 131–160  mathnet  crossref  mathscinet  zmath  adsnasa  elib; M. E. Shirokov, “The continuity of the output entropy of positive maps”, Sb. Math., 202:10 (2011), 1537–1564  crossref  isi
    8. Ivan J.S., Sabapathy K.K., Simon R., “Operator-sum representation for bosonic Gaussian channels”, Phys. Rev. A, 84:4 (2011), 042311  crossref  adsnasa  isi  elib
    9. Caruso F., Eisert J., Giovannetti V., Holevo A.S., “Optimal unitary dilation for bosonic Gaussian channels”, Phys. Rev. A, 84:2 (2011), 022306  crossref  mathscinet  adsnasa  isi  elib
    10. А. С. Холево, “Информационная емкость квантовой наблюдаемой”, Пробл. передачи информ., 48:1 (2012), 3–14  mathnet; A. S. Holevo, “Information capacity of a quantum observable”, Problems Inform. Transmission, 48:1 (2012), 1–10  crossref  isi
    11. Kreis K., van Loock P., “Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement”, Phys. Rev. A, 85:3 (2012), 032307  crossref  adsnasa  isi  elib
    12. Filippov S.N., Rybar T., Ziman M., “Local two-qubit entanglement-annihilating channels”, Phys. Rev. A, 85:1 (2012), 012303  crossref  adsnasa  isi  elib
    13. Pellonpaa J.-P., “Complete Quantum Measurements Break Entanglement”, Phys. Lett. A, 376:46 (2012), 3495–3498  crossref  mathscinet  adsnasa  isi  elib
    14. Bradler K. Hayden P. Panangaden P., “Quantum Communication in Rindler Spacetime”, Commun. Math. Phys., 312:2 (2012), 361–398  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. De Pasquale A., Giovannetti V., “Quantifying the Noise of a Quantum Channel by Noise Addition”, Phys. Rev. A, 86:5 (2012), 052302  crossref  adsnasa  isi
    16. Korbicz J.K., Horodecki P., Horodecki R., “Quantum-Correlation Breaking Channels, Broadcasting Scenarios, and Finite Markov Chains”, Phys. Rev. A, 86:4 (2012), 042319  crossref  adsnasa  isi
    17. Holevo A.S., Giovannetti V., “Quantum Channels and their Entropic Characteristics”, Rep. Prog. Phys., 75:4 (2012), 046001  crossref  mathscinet  adsnasa  isi  elib
    18. Pellonpaa J.-P., “Quantum Instruments: II. Measurement Theory”, J. Phys. A-Math. Theor., 46:2 (2013), 025303  crossref  mathscinet  adsnasa  isi
    19. Chruscinski D., “Quantum-Correlation Breaking Channels, Quantum Conditional Probability and Perron-Frobenius Theory”, Phys. Lett. A, 377:8 (2013), 606–611  crossref  mathscinet  adsnasa  isi
    20. Jiang M., Luo Sh., Fu Sh., “Channel-State Duality”, Phys. Rev. A, 87:2 (2013), 022310  crossref  adsnasa  isi  elib
    21. Filippov S.N., Melnikov A.A., Ziman M., “Dissociation and Annihilation of Multipartite Entanglement Structure in Dissipative Quantum Dynamics”, Phys. Rev. A, 88:6 (2013), 062328  crossref  isi  elib
    22. Lercher D., Giedke G., Wolf M.M., “Standard Super-Activation for Gaussian Channels Requires Squeezing”, New J. Phys., 15 (2013), 123003  crossref  isi  elib
    23. Marzolino U., “Entanglement in Dissipative Dynamics of Identical Particles”, EPL, 104:4 (2013), 40004  crossref  isi  elib
    24. Giovannetti V., Lloyd S., Maccone L., Shapiro J.H., “Electromagnetic Channel Capacity for Practical Purposes”, Nat. Photonics, 7:10 (2013), 834–838  crossref  isi  elib
    25. Filippov S.N., Ziman M., “Bipartite Entanglement-Annihilating Maps: Necessary and Sufficient Conditions”, Phys. Rev. A, 88:3 (2013), 032316  crossref  isi  elib
    26. Strelchuk S., “Parrondo's Paradox and Superactivation of Classical and Quantum Capacity of Communication Channels with Memory”, Phys. Rev. A, 88:3 (2013), 032311  crossref  isi  elib
    27. Ivan J.S., Sabapathy K.K., Simon R., “Nonclassicality Breaking Is the Same as Entanglement Breaking for Bosonic Gaussian Channels”, Phys. Rev. A, 88:3 (2013), 032302  crossref  isi  elib
    28. Schaefer J., Karpov E., Garcia-Patron R., Pilyavets O.V., Cerf N.J., “Equivalence Relations for the Classical Capacity of Single-Mode Gaussian Quantum Channels”, Phys. Rev. Lett., 111:3 (2013), 030503  crossref  isi
    29. He K., “On Entanglement Breaking Channels for Infinite Dimensional Quantum Systems”, Int. J. Theor. Phys., 52:6 (2013), 1886–1892  crossref  mathscinet  zmath  isi  elib
    30. Aberg J., Hengl S., Renner R., “Directed Quantum Communication”, New J. Phys., 15 (2013), 033025  crossref  isi  elib
    31. А. А. Кузнецова, А. С. Холево, “Теоремы кодирования для гибридных каналов. II”, Теория вероятн. и ее примен., 59:1 (2014), 168–178  mathnet  crossref  mathscinet  elib; A. A. Kuznetsova, A. S. Holevo, “Coding theorems for hybrid channels. II”, Theory Probab. Appl., 59:1 (2015), 145–154  crossref  isi
    32. Guha S. Hayden P. Krovi H. Lloyd S. Lupo C. Shapiro J.H. Takeoka M. Wilde M.M., “Quantum Enigma Machines and the Locking Capacity of a Quantum Channel”, Phys. Rev. X, 4:1 (2014), 011016  crossref  isi  elib
    33. Caruso F., Giovannetti V., Lupo C., Mancini S., “Quantum Channels and Memory Effects”, Rev. Mod. Phys., 86:4 (2014), 1203–1259  crossref  isi  elib
    34. Namiki R., Gittsovich O., Guha S., Luetkenhaus N., “Gaussian-Only Regenerative Stations Cannot Act as Quantum Repeaters”, Phys. Rev. A, 90:6 (2014), 062316  crossref  mathscinet  isi  elib
    35. Giovannetti V., Garcia-Patron R., Cerf N.J., Holevo A.S., “Ultimate Classical Communication Rates of Quantum Optical Channels”, Nat. Photonics, 8:10 (2014), 796–800  crossref  isi  elib
    36. Filippov S.N., Ziman M., “Entanglement Sensitivity To Signal Attenuation and Amplification”, Phys. Rev. A, 90:1 (2014), 010301  crossref  isi  elib
    37. Г. Г. Амосов, “Оценка выходной энтропии тензорного произведения двух квантовых каналов”, ТМФ, 182:3 (2015), 453–464  mathnet  crossref  mathscinet  adsnasa  elib; G. G. Amosov, “Estimating the output entropy of a tensor product of two quantum channels”, Theoret. and Math. Phys., 182:3 (2015), 397–406  crossref  isi  elib
    38. Sabapathy K.K., “Quantum-Optical Channels That Output Only Classical States”, Phys. Rev. A, 92:5 (2015), 052301  crossref  isi  elib
    39. Namiki R., “Amplification Uncertainty Relation For Probabilistic Amplifiers”, Phys. Rev. A, 92:3 (2015), 032326  crossref  mathscinet  isi  elib
    40. Heinosaari T., Kiukas J., Schultz J., “Breaking Gaussian Incompatibility on Continuous Variable Quantum Systems”, J. Math. Phys., 56:8 (2015), 082202  crossref  mathscinet  zmath  isi  elib
    41. Namiki R., Azuma K., “Quantum Benchmark Via An Uncertainty Product of Canonical Variables”, Phys. Rev. Lett., 114:14 (2015), 140503  crossref  isi  elib
    42. Hertz A., Karpov E., Mandilara A., Cerf N.J., “Detection of Non-Gaussian Entangled States With An Improved Continuous-Variable Separability Criterion”, Phys. Rev. A, 93:3 (2016), 032330  crossref  isi  elib
    43. Wang Q., Das S., Wilde M.M., “Hadamard Quantum Broadcast Channels”, Quantum Inf. Process., 16:10 (2017), UNSP 248  crossref  mathscinet  isi  scopus
    44. Liuzzo-Scorpo P., Mari A., Giovannetti V., Adesso G., “Optimal Continuous Variable Quantum Teleportation With Limited Resources”, Phys. Rev. Lett., 119:12 (2017), 120503  crossref  isi  scopus
    45. Ivan J.S., Sabapathy K.K., Simon R., “Scaling Maps of S-Ordered Quasiprobabilities Are Either Nonpositive Or Completely Positive”, Phys. Rev. A, 96:2 (2017), 022114  crossref  isi  scopus
    46. Cuevas A., Mari A., De Pasquale A., Orieux A., Massaro M., Sciarrino F., Mataloni P., Giovannetti V., “Cut-and-Paste Restoration of Entanglement Transmission”, Phys. Rev. A, 96:1 (2017), 012314  crossref  isi  scopus
    47. Sabapathy K.K., Winter A., “Non-Gaussian Operations on Bosonic Modes of Light: Photon-Added Gaussian Channels”, Phys. Rev. A, 95:6 (2017), 062309  crossref  isi  scopus
    48. Wilde M.M. Tomamichel M. Berta M., “Converse Bounds For Private Communication Over Quantum Channels”, IEEE Trans. Inf. Theory, 63:3 (2017), 1792–1817  crossref  mathscinet  zmath  isi  scopus
    49. Filippov S.N., Magadov K.Yu., “Positive Tensor Products of Maps and N-Tensor-Stable Positive Qubit Maps”, J. Phys. A-Math. Theor., 50:5 (2017), 055301  crossref  mathscinet  zmath  isi  scopus
    50. Qi H., Wilde M.M., “Capacities of Quantum Amplifier Channels”, Phys. Rev. A, 95:1 (2017), 012339  crossref  isi  scopus
    51. Jonsson R.H., Ried K., Martin-Martinez E., Kempf A., “Transmitting Qubits Through Relativistic Fields”, J. Phys. A-Math. Theor., 51:48 (2018), 485301  crossref  mathscinet  zmath  isi  scopus
    52. Garai S., Ivan J.S., “Gaussian Channels That Are Eventually Entanglement Breaking Yet Asymptotically Nonclassicality Saving”, Phys. Rev. A, 98:5 (2018), 052353  crossref  isi  scopus
    53. Tserkis S., Dias J., Ralph T.C., “Simulation of Gaussian Channels Via Teleportation and Error Correction of Gaussian States”, Phys. Rev. A, 98:5 (2018), 052335  crossref  isi  scopus
    54. Wilde M.M., “Entanglement Cost and Quantum Channel Simulation”, Phys. Rev. A, 98:4 (2018), 042338  crossref  mathscinet  isi  scopus
    55. Rosati M., Mari A., Giovannetti V., “Narrow Bounds For the Quantum Capacity of Thermal Attenuators”, Nat. Commun., 9 (2018), 4339  crossref  isi  scopus
    56. Kuramochi Yu., “Entanglement-Breaking Channels With General Outcome Operator Algebras”, J. Math. Phys., 59:10 (2018), 102206  crossref  mathscinet  zmath  isi  scopus
    57. Sharma K. Wilde M.M. Adhikari S. Takeoka M., “Bounding the Energy-Constrained Quantum and Private Capacities of Phase-Insensitive Bosonic Gaussian Channels”, New J. Phys., 20 (2018), 063025  crossref  isi  scopus
    58. Davis N., Shirokov M.E., Wilde M.M., “Energy-Constrained Two-Way Assisted Private and Quantum Capacities of Quantum Channels”, Phys. Rev. A, 97:6 (2018), 062310  crossref  mathscinet  isi  scopus
    59. Wilde M.M., “Strong and Uniform Convergence in the Teleportation Simulation of Bosonic Gaussian Channels”, Phys. Rev. A, 97:6 (2018), 062305  crossref  isi  scopus
    60. Rosset D. Buscemi F. Liang Y.-Ch., “Resource Theory of Quantum Memories and Their Faithful Verification With Minimal Assumptions”, Phys. Rev. X, 8:2 (2018), 021033  crossref  isi  scopus
    61. Sabapathy K.K., Ivan J.S., Garcia-Patron R., Simon R., “Divergence-Free Approach For Obtaining Decompositions of Quantum-Optical Processes”, Phys. Rev. A, 97:2 (2018), 022339  crossref  isi  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Просмотров:
    Эта страница:419
    Полный текст:101
    Литература:42
    Первая стр.:4
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019