RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2008, Volume 44, Issue 3, Pages 33–49 (Mi ppi1278)  

This article is cited in 12 scientific papers (total in 12 papers)

Information Theory

On the Zero-Rate Error Exponent for a BSC with Noisy Feedback

M. V. Burnasheva, H. Yamamotob

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
b University of Tokyo

Abstract: For information transmission, a binary symmetric channel is used. There is also another noisy binary symmetric channel (feedback channel), and the transmitter observes (without delay) all outputs of the forward channel via the feedback channel. Transmission of nonexponentially many messages is considered (i.e., the transmission rate is zero). The achievable decoding error exponent for this combination of channels is investigated. It is shown that if the crossover probability of the feedback channel is less than a certain positive value, then the achievable error exponent is better than the similar error exponent of the no-feedback channel. The described transmission method and the corresponding lower bound for the error exponent can be improved, as well as extended to positive transmission rates.

Full text: PDF file (904 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2008, 44:3, 198–213

Bibliographic databases:

UDC: 621.391.1:519.2
Received: 19.03.2008
Revised: 15.05.2008

Citation: M. V. Burnashev, H. Yamamoto, “On the Zero-Rate Error Exponent for a BSC with Noisy Feedback”, Probl. Peredachi Inf., 44:3 (2008), 33–49; Problems Inform. Transmission, 44:3 (2008), 198–213

Citation in format AMSBIB
\Bibitem{BurYam08}
\by M.~V.~Burnashev, H.~Yamamoto
\paper On the Zero-Rate Error Exponent for a~BSC with Noisy Feedback
\jour Probl. Peredachi Inf.
\yr 2008
\vol 44
\issue 3
\pages 33--49
\mathnet{http://mi.mathnet.ru/ppi1278}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2467419}
\zmath{https://zbmath.org/?q=an:1173.94408}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 3
\pages 198--213
\crossref{https://doi.org/10.1134/S0032946008030034}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000260150400003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-52349094846}


Linking options:
  • http://mi.mathnet.ru/eng/ppi1278
  • http://mi.mathnet.ru/eng/ppi/v44/i3/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Burnashev M.V., Yamamoto H., “On BSC, noisy feedback and three messages”, 2008 IEEE International Symposium on Information Theory Proceedings, 2008, 886–889  crossref  isi
    2. Burnashev M.V., Yamamoto H., “Noisy feedback improves the BSC reliability function”, 2009 IEEE International Symposium on Information Theory, 2009, 1501–1505  crossref  isi
    3. M. V. Burnashev, H. Yamamoto, “On the reliability function for a BSC with noisy feedback”, Problems Inform. Transmission, 46:2 (2010), 103–121  mathnet  crossref  mathscinet  isi
    4. Xiang Yu., Kim Y.-H., “On the AWGN channel with noisy feedback and peak energy constraint”, 2010 IEEE International Symposium on Information Theory, IEEE International Symposium on Information Theory, 2010, 256–259  isi
    5. Kim Y.-H., Lapidoth A., Weissman Ts., “Error exponents for the Gaussian channel with active noisy feedback”, IEEE Trans. Inform. Theory, 57:3 (2011), 1223–1236  crossref  mathscinet  isi  elib
    6. Nakiboǧlu B., Zheng L., “Errors-and-erasures decoding for block codes with feedback”, IEEE Trans. Inform. Theory, 58:1 (2012), 24–49  crossref  mathscinet  isi
    7. M. V. Burnashev, H. Yamamoto, “On the reliability function for a noisy feedback Gaussian channel: Zero rate”, Problems Inform. Transmission, 48:3 (2012), 199–216  mathnet  crossref  isi
    8. Burnashev M.V. Yamamoto H., “On Decoding Error Exponent of Gaussian Channel with Noisy Feedback: Nonexponential Number of Messages”, 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), IEEE International Symposium on Information Theory, IEEE, 2012  isi
    9. Mirghaderi R., Goldsmith A., Weissman Ts., “Achievable Error Exponents in the Gaussian Channel with Rate-Limited Feedback”, IEEE Trans. Inf. Theory, 59:12 (2013), 8144–8156  crossref  mathscinet  isi
    10. Xiang Yu., Kim Y.-H., “Gaussian Channel with Noisy Feedback and Peak Energy Constraint”, IEEE Trans. Inf. Theory, 59:8 (2013), 4746–4756  crossref  mathscinet  isi  elib
    11. M. V. Burnashev, H. Yamamoto, “On using feedback in a Gaussian channel”, Problems Inform. Transmission, 50:3 (2014), 217–231  mathnet  crossref  isi
    12. Grover P., “Information Friction and Its Implications on Minimum Energy Required For Communication”, IEEE Trans. Inf. Theory, 61:2 (2015), 895–907  crossref  mathscinet  isi  elib
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:294
    Full text:56
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020