RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2008, Volume 44, Issue 3, Pages 50–62 (Mi ppi1279)  

This article is cited in 6 scientific papers (total in 6 papers)

Coding Theory

On the Error-Correcting Capability of LDPC Codes

K. Sh. Zigangirova, A. E. Pusaneb, D. K. Zinangirova, D. J. Costellob

a Institute for Information Transmission Problems, Russian Academy of Sciences
b University of Notre Dame

Abstract: We consider the ensemble of low-density parity-check (LDPC) codes introduced by Gallager [Low-Density Parity-Check Codes, Cambridge: MIT Press, 1963]. The Zyablov–Pinsker majority-logic iterative algorithm [2] for decoding LDPC codes is analyzed on the binary symmetric channel. An analytical lower bound on the error-correcting capability $\tau_{\max}$ that grows linearly in the code block length is obtained.

Full text: PDF file (808 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2008, 44:3, 214–225

Bibliographic databases:

UDC: 621.391.15
Received: 22.11.2007
Revised: 30.04.2008

Citation: K. Sh. Zigangirov, A. E. Pusane, D. K. Zinangirov, D. J. Costello, “On the Error-Correcting Capability of LDPC Codes”, Probl. Peredachi Inf., 44:3 (2008), 50–62; Problems Inform. Transmission, 44:3 (2008), 214–225

Citation in format AMSBIB
\Bibitem{ZigPusZin08}
\by K.~Sh.~Zigangirov, A.~E.~Pusane, D.~K.~Zinangirov, D.~J.~Costello
\paper On the Error-Correcting Capability of LDPC Codes
\jour Probl. Peredachi Inf.
\yr 2008
\vol 44
\issue 3
\pages 50--62
\mathnet{http://mi.mathnet.ru/ppi1279}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2467420}
\zmath{https://zbmath.org/?q=an:1173.94010}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 3
\pages 214--225
\crossref{https://doi.org/10.1134/S0032946008030046}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000260150400004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-54349097529}


Linking options:
  • http://mi.mathnet.ru/eng/ppi1279
  • http://mi.mathnet.ru/eng/ppi/v44/i3/p50

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Rybin P., Zyablov V., “Asymptotic estimation of error fraction corrected by binary LDPC code”, 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), 2011, 351–355  crossref  adsnasa  isi
    2. V. V. Zyablov, P. S. Rybin, “Analysis of the relation between properties of LDPC codes and the Tanner graph”, Problems Inform. Transmission, 48:4 (2012), 297–323  mathnet  crossref  isi
    3. Rybin P., “on the Error-Correcting Capabilities of Low-Complexity Decoded Irregular Ldpc Codes”, 2014 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2014, 3165–3169  isi
    4. I. V. Zhilin, F. I. Ivanov, “Vectorizing computations at decoding of nonbinary codes with small density of checks”, Autom. Remote Control, 77:10 (2016), 1781–1791  mathnet  crossref  isi  elib
    5. Frolov A. Zyablov V., “On the Multiple Threshold Decoding of Ldpc Codes Over Gf(Q)”, Adv. Math. Commun., 11:1 (2017), 123–137  crossref  mathscinet  zmath  isi  scopus
    6. Rybin P. Frolov A., “On the Decoding Radius Realized By Low-Complexity Decoded Non-Binary Irregular Ldpc Codes”, Proceedings of 2018 International Symposium on Information Theory and Its Applications (Isita2018), IEEE, 2018, 384–388  crossref  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:716
    Full text:166
    References:37
    First page:22

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020