RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2002, Volume 38, Issue 1, Pages 48–58 (Mi ppi1299)  

This article is cited in 5 scientific papers (total in 5 papers)

Coding Theory

Encoder and Distance Properties of Woven Convolutional Codes with One Tailbiting Component Code

M. Handlery, R. Johannesson, V. V. Zyablov


Abstract: Woven convolutional codes with one tailbiting component code are studied and their generator matrices are given. It is shown that, if the constituent encoders are identical, a woven convolutional encoder with an outer convolutional warp and one inner tailbiting encoder (WIT) generates the same code as a woven convolutional encoder with one outer tailbiting encoder and an inner convolutional warp (WOT). However, for rate $R_{tb}<1$ tailbiting encoders, the WOT cannot be an encoder realization with a minimum number of delay elements. Lower bounds on the free distance and active distances of woven convolutional codes with a tailbiting component code are given. These bounds are equal to those for woven codes consisting exclusively of unterminated convolutional codes. However, for woven convolutional codes with one tailbiting component code, the conditions for the bounds to hold are less strict.

Full text: PDF file (610 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2002, 38:1, 41–49

Bibliographic databases:

Received: 22.05.2001

Citation: M. Handlery, R. Johannesson, V. V. Zyablov, “Encoder and Distance Properties of Woven Convolutional Codes with One Tailbiting Component Code”, Probl. Peredachi Inf., 38:1 (2002), 48–58; Problems Inform. Transmission, 38:1 (2002), 41–49

Citation in format AMSBIB
\Bibitem{HanJohZya02}
\by M.~Handlery, R.~Johannesson, V.~V.~Zyablov
\paper Encoder and Distance Properties of Woven Convolutional Codes with One Tailbiting Component Code
\jour Probl. Peredachi Inf.
\yr 2002
\vol 38
\issue 1
\pages 48--58
\mathnet{http://mi.mathnet.ru/ppi1299}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101311}
\zmath{https://zbmath.org/?q=an:1027.94026}
\transl
\jour Problems Inform. Transmission
\yr 2002
\vol 38
\issue 1
\pages 41--49
\crossref{https://doi.org/10.1023/A:1020042222802}


Linking options:
  • http://mi.mathnet.ru/eng/ppi1299
  • http://mi.mathnet.ru/eng/ppi/v38/i1/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bocharova I.E., Handlery M., Johannesson R., Kudryashov B.D., “Tailbiting codes obtained via convolutional codes with large active distance-slopes”, IEEE Trans. Inform. Theory, 48:9 (2002), 2577–2587  crossref  mathscinet  zmath  isi
    2. M. Handlery, R. Johannesson, V. V. Zyablov, “Distance Approach to Window Decoding”, Problems Inform. Transmission, 38:3 (2002), 169–181  mathnet  crossref  mathscinet  zmath
    3. M. Handlery, S. Höst, R. Johannesson, V. V. Zyablov, “A Distance Measure Tailored to Tailbiting Codes”, Problems Inform. Transmission, 38:4 (2002), 280–295  mathnet  crossref  mathscinet  zmath
    4. Handlery M., Johannesson R., Zyablov V.V., “Boosting the error performance of suboptimal tailbiting decoders”, IEEE Transactions on Communications, 51:9 (2003), 1485–1491  crossref  isi
    5. HandleryM., Johannesson R., Zyablov V.V., “On error exponents for woven convolutional codes with one tailbiting component code”, IEEE Trans. Inform. Theory, 50:8 (2004), 1809–1811  crossref  mathscinet  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:392
    Full text:113
    References:31

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020