RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2002, Volume 38, Issue 4, Pages 37–55 (Mi ppi1324)  

This article is cited in 1 scientific paper (total in 1 paper)

Information Theory and Coding Theory

A Distance Measure Tailored to Tailbiting Codes

M. Handlery, S. Höst, R. Johannesson, V. V. Zyablov


Abstract: The error-correcting capability of tailbiting codes generated by convolutional encoders is described. In order to obtain a description beyond what the minimum distance $d_{\min}$ of the tailbiting code implies, the active tailbiting segment distance is introduced. The description of correctable error patterns via active distances leads to an upper bound on the decoding block error probability of tailbiting codes. The necessary length of a tailbiting code so that its minimum distance is equal to the free distance $d_{\mathrm{free}}$ of the convolutional code encoded by the same encoder is easily obtained from the active tailbiting segment distance. This is useful when designing and analyzing concatenated convolutional codes with component codes that are terminated using the tailbiting method. Lower bounds on the active tailbiting segment distance and an upper bound on the ratio between the tailbiting length and memory of the convolutional generator matrix such that $d_{\min}$ equals $d_{\mathrm{free}}$ are derived. Furthermore, affine lower bounds on the active tailbiting segment distance suggest that good tailbiting codes are generated by convolutional encoders with large active-distance slopes.

Full text: PDF file (3198 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2002, 38:4, 280–295

Bibliographic databases:

UDC: 621.391.15
Received: 19.06.2002
Revised: 29.08.2002

Citation: M. Handlery, S. Höst, R. Johannesson, V. V. Zyablov, “A Distance Measure Tailored to Tailbiting Codes”, Probl. Peredachi Inf., 38:4 (2002), 37–55; Problems Inform. Transmission, 38:4 (2002), 280–295

Citation in format AMSBIB
\Bibitem{HanHosJoh02}
\by M.~Handlery, S.~H\"ost, R.~Johannesson, V.~V.~Zyablov
\paper A Distance Measure Tailored to Tailbiting Codes
\jour Probl. Peredachi Inf.
\yr 2002
\vol 38
\issue 4
\pages 37--55
\mathnet{http://mi.mathnet.ru/ppi1324}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101740}
\zmath{https://zbmath.org/?q=an:1021.94022}
\transl
\jour Problems Inform. Transmission
\yr 2002
\vol 38
\issue 4
\pages 280--295
\crossref{https://doi.org/10.1023/A:1022097828917}


Linking options:
  • http://mi.mathnet.ru/eng/ppi1324
  • http://mi.mathnet.ru/eng/ppi/v38/i4/p37

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Forney G.D. (Jr.), Grassl M., Guha S., “Convolutional and tail-biting quantum error-correcting codes”, IEEE Trans. Inform. Theory, 53:3 (2007), 865  crossref  mathscinet  zmath  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:222
    Full text:63
    References:27

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019