RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2004, Volume 40, Issue 4, Pages 48–67 (Mi ppi150)  

This article is cited in 8 scientific papers (total in 8 papers)

Coding Theory

Classification of Steiner Quadruple Systems of Order 16 and of Rank at Most 13

V. A. Zinov'ev, D. V. Zinov'ev

Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: A Steiner quadruple system SQS($v$) of order $v$ is a 3-design $T(v;4;3;\lambda)$ with $\lambda=1$. In this paper we describe all nonisomorphic systems SQS(16) that can be obtained by the generalized concatenated construction (GC-construction). These Steiner systems have rank at most 13 over $\mathbb F_2$. In particular, there is one system SQS(16) of rank 11 (points and planes of the a fine geometry AG(4;2)), fifteen systems of rank 12, and 4131 systems of rank 13. All these Steiner systems are resolvable.

Full text: PDF file (2219 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2004, 40:4, 337–355

Bibliographic databases:

UDC: 621.394.74:512
Received: 10.02.2004
Revised: 17.06.2004

Citation: V. A. Zinov'ev, D. V. Zinov'ev, “Classification of Steiner Quadruple Systems of Order 16 and of Rank at Most 13”, Probl. Peredachi Inf., 40:4 (2004), 48–67; Problems Inform. Transmission, 40:4 (2004), 337–355

Citation in format AMSBIB
\Bibitem{ZinZin04}
\by V.~A.~Zinov'ev, D.~V.~Zinov'ev
\paper Classification of Steiner Quadruple Systems of Order~16 and of Rank at Most~13
\jour Probl. Peredachi Inf.
\yr 2004
\vol 40
\issue 4
\pages 48--67
\mathnet{http://mi.mathnet.ru/ppi150}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2105853}
\zmath{https://zbmath.org/?q=an:1077.05015}
\transl
\jour Problems Inform. Transmission
\yr 2004
\vol 40
\issue 4
\pages 337--355
\crossref{https://doi.org/10.1007/s11122-004-0003-1}


Linking options:
  • http://mi.mathnet.ru/eng/ppi150
  • http://mi.mathnet.ru/eng/ppi/v40/i4/p48

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Zinov'ev, D. V. Zinov'ev, “Vasil'ev Codes of Length $n=2^m$ and Doubling of Steiner Systems $S(n,4,3)$ of a Given Rank”, Problems Inform. Transmission, 42:1 (2006), 10–29  mathnet  crossref  mathscinet  zmath
    2. V. A. Zinov'ev, D. V. Zinov'ev, “Classification of Steiner Quadruple Systems of Order 16 and of Rank 14”, Problems Inform. Transmission, 42:3 (2006), 217–229  mathnet  crossref  mathscinet
    3. Kaski P., Östergård P.R.J., Pottonen O., “The Steiner quadruple systems of order 16”, J. Combin. Theory Ser. A, 113:8 (2006), 1764–1770  crossref  mathscinet  zmath  isi  elib
    4. V. A. Zinov'ev, D. V. Zinov'ev, “On Resolvability of Steiner Systems $S(v=2^m,4,3)$ of Rank $r\le v-m+1$ over $\mathbb F_2$”, Problems Inform. Transmission, 43:1 (2007), 33–47  mathnet  crossref  mathscinet  isi
    5. Solov'eva F.I., “On perfect binary codes”, Discrete Appl. Math., 156:9 (2008), 1488–1498  crossref  mathscinet  zmath  isi
    6. V. A. Zinoviev, D. V. Zinoviev, “On one transformation of Steiner quadruple systems $S(v,4,3)$”, Problems Inform. Transmission, 45:4 (2009), 317–332  mathnet  crossref  mathscinet  isi
    7. S. V. Syrovatskaya, “O $P$-algebrakh na osnove 4-sistem”, Chebyshevskii sb., 12:2 (2011), 110–117  mathnet  mathscinet
    8. V. A. Zinoviev, D. V. Zinoviev, “Steiner triple systems $S(2^m-1,3,2)$ of rank $2^m-m+1$ over $\mathbb F_2$”, Problems Inform. Transmission, 48:2 (2012), 102–126  mathnet  crossref  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:374
    Full text:115
    References:33
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020