RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 1969, Volume 5, Issue 3, Pages 64–72 (Mi ppi1811)  

This article is cited in 3 scientific papers (total in 3 papers)

Markov Processes over Denumerable Products of Spaces, Describing Large Systems of Automata

L. N. Vaserstein


Abstract: A criterion is obtained for the uniqueness of the stationary probabilities of a Markov operator. This criterion is useful for operators related to homogeneous automata games. Similar methods are applicable to certain problems in statistical physics, biology, etc.

Full text: PDF file (619 kB)

English version:
Problems of Information Transmission, 1969, 5:3, 47–52

Bibliographic databases:

UDC: 519.21
Received: 24.02.1969

Citation: L. N. Vaserstein, “Markov Processes over Denumerable Products of Spaces, Describing Large Systems of Automata”, Probl. Peredachi Inf., 5:3 (1969), 64–72; Problems Inform. Transmission, 5:3 (1969), 47–52

Citation in format AMSBIB
\Bibitem{Vas69}
\by L.~N.~Vaserstein
\paper Markov Processes over Denumerable Products of Spaces, Describing Large Systems of Automata
\jour Probl. Peredachi Inf.
\yr 1969
\vol 5
\issue 3
\pages 64--72
\mathnet{http://mi.mathnet.ru/ppi1811}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=314115}
\zmath{https://zbmath.org/?q=an:0273.60054}
\transl
\jour Problems Inform. Transmission
\yr 1969
\vol 5
\issue 3
\pages 47--52


Linking options:
  • http://mi.mathnet.ru/eng/ppi1811
  • http://mi.mathnet.ru/eng/ppi/v5/i3/p64

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R. L. Dobrushin, “Gibbsian random fields for particles without hard core”, Theoret. and Math. Phys., 4:1 (1970), 705–719  mathnet  crossref  mathscinet  zmath
    2. A. Yu. Veretennikov, S. A. Klokov, “On local mixing conditions for SDE approximations”, Theory Probab. Appl., 57:1 (2013), 110–131  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:840
    Full text:352

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018