RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2010, Volume 46, Issue 2, Pages 3–23 (Mi ppi2012)  

This article is cited in 8 scientific papers (total in 8 papers)

Information Theory

On the reliability function for a BSC with noisy feedback

M. V. Burnasheva, H. Yamamotob

a A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
b University of Tokyo, Japan

Abstract: A binary symmetric channel is used for information transmission. There is also another noisy binary symmetric channel (feedback channel), and the transmitter observes without delay all outputs of the forward channel via the feedback channel. Transmission of an exponential number of messages is considered (i.e., the transmission rate is positive). The achievable decoding error exponent for this combination of channels is studied. It is shown that if the crossover probability of the feedback channel is less than a certain positive value, then the achievable error exponent is better than the decoding error exponent of a channel without feedback.

Full text: PDF file (321 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2010, 46:2, 103–121

Bibliographic databases:

UDC: 621.391.1+519.2
Received: 24.08.2009
Revised: 21.01.2010

Citation: M. V. Burnashev, H. Yamamoto, “On the reliability function for a BSC with noisy feedback”, Probl. Peredachi Inf., 46:2 (2010), 3–23; Problems Inform. Transmission, 46:2 (2010), 103–121

Citation in format AMSBIB
\Bibitem{BurYam10}
\by M.~V.~Burnashev, H.~Yamamoto
\paper On the reliability function for a~BSC with noisy feedback
\jour Probl. Peredachi Inf.
\yr 2010
\vol 46
\issue 2
\pages 3--23
\mathnet{http://mi.mathnet.ru/ppi2012}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2724793}
\transl
\jour Problems Inform. Transmission
\yr 2010
\vol 46
\issue 2
\pages 103--121
\crossref{https://doi.org/10.1134/S0032946010020018}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280241600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956152145}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2012
  • http://mi.mathnet.ru/eng/ppi/v46/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Burnashev M.V., Yamamoto H., “Noisy Feedback Improves the BSC Reliability Function”, 2009 IEEE International Symposium on Information Theory, 2009, 1501–1505  crossref  isi  scopus
    2. Nakiboglu B., Zheng L., “Errors-and-Erasures Decoding for Block Codes With Feedback”, IEEE Trans Inform Theory, 58:1 (2012), 24–49  crossref  mathscinet  isi  elib  scopus
    3. M. V. Burnashev, H. Yamamoto, “On the reliability function for a noisy feedback Gaussian channel: Zero rate”, Problems Inform. Transmission, 48:3 (2012), 199–216  mathnet  crossref  isi
    4. Burnashev M.V., Yamamoto H., “On Decoding Error Exponent of Gaussian Channel with Noisy Feedback: Nonexponential Number of Messages”, 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), IEEE International Symposium on Information Theory, IEEE, 2012  isi
    5. Mirghaderi R. Goldsmith A. Weissman Ts., “Achievable Error Exponents in the Gaussian Channel with Rate-Limited Feedback”, IEEE Trans. Inf. Theory, 59:12 (2013), 8144–8156  crossref  mathscinet  isi  scopus
    6. Xiang Yu. Kim Y.-H., “Gaussian Channel with Noisy Feedback and Peak Energy Constraint”, IEEE Trans. Inf. Theory, 59:8 (2013), 4746–4756  crossref  mathscinet  isi  elib  scopus
    7. M. V. Burnashev, H. Yamamoto, “On using feedback in a Gaussian channel”, Problems Inform. Transmission, 50:3 (2014), 217–231  mathnet  crossref  isi
    8. Burnashev M.V., Yamamoto H., “Noisy Feedback Improves the Gaussian Channel Reliability Function”, 2014 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2014, 2554–2558  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:323
    Full text:69
    References:35
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020