RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2010, Volume 46, Issue 2, Pages 30–46 (Mi ppi2014)  

This article is cited in 4 scientific papers (total in 4 papers)

Coding Theory

Multitrial decoding of concatenated codes using fixed thresholds

C. Sengera, V. R. Sidorenkoab, M. Bosserta, V. V. Zyablovb

a University of Ulm, Germany
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences

Abstract: For decoding concatenated codes up to half their designed distance, generalized minimum distance (GMD) decoding can be used. GMD decoding applies multitrial error/erasure decoding of the outer code, where erased symbols depend on some reliability measure stemming from the inner decoders. We consider the case where the outer decoder is able to decode beyond half the minimum distance of the outer code. For a given number of outer decoding trials, we derive achievable decoding radii for GMD decoding. Vice versa, we give a lower bound on the number of required outer decoding trials to obtain the greatest possible decoding radius.

Full text: PDF file (323 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2010, 46:2, 127–141

Bibliographic databases:

UDC: 621.391.15+512
Received: 05.11.2008
Revised: 29.12.2009

Citation: C. Senger, V. R. Sidorenko, M. Bossert, V. V. Zyablov, “Multitrial decoding of concatenated codes using fixed thresholds”, Probl. Peredachi Inf., 46:2 (2010), 30–46; Problems Inform. Transmission, 46:2 (2010), 127–141

Citation in format AMSBIB
\Bibitem{SenSidBos10}
\by C.~Senger, V.~R.~Sidorenko, M.~Bossert, V.~V.~Zyablov
\paper Multitrial decoding of concatenated codes using fixed thresholds
\jour Probl. Peredachi Inf.
\yr 2010
\vol 46
\issue 2
\pages 30--46
\mathnet{http://mi.mathnet.ru/ppi2014}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2724795}
\transl
\jour Problems Inform. Transmission
\yr 2010
\vol 46
\issue 2
\pages 127--141
\crossref{https://doi.org/10.1134/S0032946010020031}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000280241600003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955669739}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2014
  • http://mi.mathnet.ru/eng/ppi/v46/i2/p30

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Senger Ch., Sidorenko V.R., Bossert M., Zyablov V.V., “Optimal thresholds for GMD decoding with $l+1$ over $l$-extended Bounded Distance decoders”, 2010 IEEE International Symposium on Information Theory, IEEE International Symposium on Information Theory, 2010, 1100–1104  crossref  isi  scopus
    2. Senger Ch., Sidorenko V.R., Bossert M., Zyablov V.V., “Optimal threshold-based multi-trial error/erasure decoding with the Guruswami-Sudan algorithm”, 2011 IEEE International Symposium on Information Theory Proceedings (ISIT), 2011, 845–849  crossref  adsnasa  isi  scopus
    3. J. Weber, V. R. Sidorenko, C. Senger, K. Abdel-Ghaffar, “Asymptotic single-trial strategies for GMD decoding with arbitrary error-erasure tradeoff”, Problems Inform. Transmission, 48:12 (2012), 324–333  mathnet  crossref  isi
    4. Chaaban A. Sidorenko V.R. Senger Ch., “on Multi-Trial Forney-Kovalev Decoding of Concatenated Codes”, Adv. Math. Commun., 8:1 (2014), 1–20  crossref  mathscinet  zmath  isi  elib  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:361
    Full text:85
    References:44
    First page:8

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020