RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2011, Volume 47, Issue 4, Pages 68–83 (Mi ppi2061)  

This article is cited in 6 scientific papers (total in 6 papers)

Communication Network Theory

Call center operation model as a $MAP/PH/N/R-N$ system with impatient customers

S. A. Dudin, O. S. Dudina

Belarusian State University, Minsk

Abstract: We analyze a multiserver queueing system with a finite buffer and impatient customers. The arrival customer flow is assumed to be Markovian. Service times of each server are phase-type distributed. If all servers are busy and a new arrival occurs, it enters the buffer with a probability depending on the total number of customers in the system and waits for service, or leaves the system with the complementary probability. A waiting customer may become impatient and abandon the system. We give an algorithm for finding the stationary distribution of system states and derive formulas for basic performance characteristics. We find Laplace–Stieltjes transforms for sojourn and waiting times. Numeric examples are given.

Full text: PDF file (216 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2011, 47:4, 364–377

Bibliographic databases:

UDC: 621.391.71+519.2
Received: 22.02.2011
Revised: 22.09.2011

Citation: S. A. Dudin, O. S. Dudina, “Call center operation model as a $MAP/PH/N/R-N$ system with impatient customers”, Probl. Peredachi Inf., 47:4 (2011), 68–83; Problems Inform. Transmission, 47:4 (2011), 364–377

Citation in format AMSBIB
\Bibitem{DudDud11}
\by S.~A.~Dudin, O.~S.~Dudina
\paper Call center operation model as a~$MAP/PH/N/R-N$ system with impatient customers
\jour Probl. Peredachi Inf.
\yr 2011
\vol 47
\issue 4
\pages 68--83
\mathnet{http://mi.mathnet.ru/ppi2061}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2933443}
\transl
\jour Problems Inform. Transmission
\yr 2011
\vol 47
\issue 4
\pages 364--377
\crossref{https://doi.org/10.1134/S0032946011040053}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000299373700005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856934059}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2061
  • http://mi.mathnet.ru/eng/ppi/v47/i4/p68

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Dudina O., Kim Ch., Dudin S., “Retrial Queuing System with Markovian Arrival Flow and Phase-Type Service Time Distribution”, Comput. Ind. Eng., 66:2 (2013), 360–373  crossref  mathscinet  isi  elib  scopus
    2. Dudin S., Kim Ch., Dudina O., “Mmap Vertical Bar M Vertical Bar N Queueing System with Impatient Heterogeneous Customers as a Model of a Contact Center”, Comput. Oper. Res., 40:7 (2013), 1790–1803  crossref  mathscinet  isi  elib  scopus
    3. Kim Ch., Dudin A., Dudin S., Dudina O., “Tandem Queueing System with Impatient Customers as a Model of Call Center with Interactive Voice Response”, Perform. Eval., 70:6 (2013), 440–453  crossref  isi  elib  scopus
    4. Dudin S., Kim Ch., Dudina O., Baek J., “Queueing System with Heterogeneous Customers as a Model of a Call Center with a Call-Back for Lost Customers”, Math. Probl. Eng., 2013, 983723  crossref  mathscinet  zmath  isi  elib  scopus
    5. A. N. Dudin, A. A. Nazarov, “The $MMAP/M/R/0$ queueing system with reservation of servers operating in a random environment”, Problems Inform. Transmission, 51:3 (2015), 289–298  mathnet  crossref  isi  elib
    6. Sun B., Dudin A., Dudin S., “Queueing System With Impatient Customers, Visible Queue and Replenishable Inventory”, Appl. Comput. Math., 17:2 (2018), 161–174  mathscinet  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:273
    Full text:80
    References:30
    First page:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020