RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2012, Volume 48, Issue 3, Pages 3–22 (Mi ppi2082)  

This article is cited in 5 scientific papers (total in 5 papers)

Information Theory

On the reliability function for a noisy feedback Gaussian channel: Zero rate

M. V. Burnasheva, H. Yamamotob

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
b University of Tokyo, Japan

Abstract: A discrete-time channel with independent additive Gaussian noise is used for information transmission. There is also a feedback channel with independent additive Gaussian noise, and the transmitter observes all outputs of the forward channel without delay via this feedback channel. Transmission of a nonexponential number of messages is considered (i.e., the transmission rate is zero), and the achievable decoding error exponent for such a combination of channels is investigated. It is shown that for any finite noise in the feedback channel the achievable error exponent is better than the similar error exponent for a no-feedback channel. The transmission/decoding method developed in the paper strengthens the method earlier used by the authors for a BSC. In particular, for small feedback noise, it provides a gain of 23.6 % (instead of 14.3 % obtained earlier for a BSC).

Full text: PDF file (274 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2012, 48:3, 199–216

Bibliographic databases:

UDC: 621.3961.1+519.2
Received: 09.04.2012
Revised: 25.06.2012

Citation: M. V. Burnashev, H. Yamamoto, “On the reliability function for a noisy feedback Gaussian channel: Zero rate”, Probl. Peredachi Inf., 48:3 (2012), 3–22; Problems Inform. Transmission, 48:3 (2012), 199–216

Citation in format AMSBIB
\Bibitem{BurYam12}
\by M.~V.~Burnashev, H.~Yamamoto
\paper On the reliability function for a~noisy feedback Gaussian channel: Zero rate
\jour Probl. Peredachi Inf.
\yr 2012
\vol 48
\issue 3
\pages 3--22
\mathnet{http://mi.mathnet.ru/ppi2082}
\transl
\jour Problems Inform. Transmission
\yr 2012
\vol 48
\issue 3
\pages 199--216
\crossref{https://doi.org/10.1134/S0032946012030015}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000310208200001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871819002}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2082
  • http://mi.mathnet.ru/eng/ppi/v48/i3/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Mirghaderi R. Goldsmith A. Weissman Ts., “Achievable Error Exponents in the Gaussian Channel with Rate-Limited Feedback”, IEEE Trans. Inf. Theory, 59:12 (2013), 8144–8156  crossref  mathscinet  isi  scopus
    2. M. V. Burnashev, H. Yamamoto, “On using feedback in a Gaussian channel”, Problems Inform. Transmission, 50:3 (2014), 217–231  mathnet  crossref  isi
    3. Burnashev M.V. Yamamoto H., “Noisy Feedback Improves the Gaussian Channel Reliability Function”, 2014 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2014, 2554–2558  isi
    4. Grover P., “Information Friction and Its Implications on Minimum Energy Required For Communication”, IEEE Trans. Inf. Theory, 61:2 (2015), 895–907  crossref  mathscinet  isi  elib  scopus
    5. Palacio-Baus K. Devroye N., “Two-Way Awgn Channel Error Exponents At Zero Rate”, 2018 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2018, 1685–1689  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:273
    Full text:43
    References:39
    First page:15

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020