RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2003, Volume 39, Issue 1, Pages 118–133 (Mi ppi209)  

This article is cited in 4 scientific papers (total in 4 papers)

Indefinite Knowledge about an Object and Accuracy of Its Recovery Methods

G. G. Magaril-Il'yaev, K. Yu. Osipenko, V. M. Tikhomirov


Abstract: An approach to the problem of optimal recovery of functionals and operators on classes of functions under the conditions of infinite knowledge of functions themselves is discussed. The capabilities of this approach are demonstrated in a number of examples. In the end of the paper, a general result about optimal recovery of linear functionals is given.

Full text: PDF file (1243 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2003, 39:1, 104–118

Bibliographic databases:

UDC: 621.391:519.2

Citation: G. G. Magaril-Il'yaev, K. Yu. Osipenko, V. M. Tikhomirov, “Indefinite Knowledge about an Object and Accuracy of Its Recovery Methods”, Probl. Peredachi Inf., 39:1 (2003), 118–133; Problems Inform. Transmission, 39:1 (2003), 104–118

Citation in format AMSBIB
\Bibitem{MagOsiTik03}
\by G.~G.~Magaril-Il'yaev, K.~Yu.~Osipenko, V.~M.~Tikhomirov
\paper Indefinite Knowledge about an Object and Accuracy of Its Recovery Methods
\jour Probl. Peredachi Inf.
\yr 2003
\vol 39
\issue 1
\pages 118--133
\mathnet{http://mi.mathnet.ru/ppi209}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101669}
\zmath{https://zbmath.org/?q=an:1074.41021}
\transl
\jour Problems Inform. Transmission
\yr 2003
\vol 39
\issue 1
\pages 104--118
\crossref{https://doi.org/10.1023/A:1023686600253}


Linking options:
  • http://mi.mathnet.ru/eng/ppi209
  • http://mi.mathnet.ru/eng/ppi/v39/i1/p118

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. S. Darhovsky, “Stochastic Recovery Problem”, Problems Inform. Transmission, 44:4 (2008), 303–314  mathnet  crossref  mathscinet  zmath  isi
    2. A. Zh. Zhubanysheva, N. Temirgaliev, “Informative cardinality of trigonometric Fourier coefficients and their limiting error in the discretization of a differentiation operator in multidimensional Sobolev classes”, Comput. Math. Math. Phys., 55:9 (2015), 1432–1443  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    3. R. R. Akopyan, “Optimal recovery of a function analytic in a disk from approximately given values on a part of the boundary”, Proc. Steklov Inst. Math. (Suppl.), 300, suppl. 1 (2018), 25–37  mathnet  crossref  crossref  mathscinet  isi  elib
    4. R. R. Akopyan, “Optimalnoe vosstanovlenie analiticheskoi v poluploskosti funktsii po priblizhenno zadannym znacheniyam na chasti granichnoi pryamoi”, Tr. IMM UrO RAN, 24, no. 4, 2018, 19–33  mathnet  crossref  elib
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:599
    Full text:276
    References:50
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020