|
This article is cited in 11 scientific papers (total in 11 papers)
Coding Theory
On classical capacities of infinite-dimensional quantum channels
A. S. Holevo, M. E. Shirokov Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow
Abstract:
A coding theorem for entanglement-assisted communication via an infinite-dimensional quantum channel with linear constraints is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and $\chi$-capacity of constrained channels are obtained, and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between coherent information and the measure of privacy of classical information transmission via an infinite-dimensional quantum channel is proved.
Full text:
PDF file (289 kB)
References:
PDF file
HTML file
English version:
Problems of Information Transmission, 2013, 49:1, 15–31
Bibliographic databases:
UDC:
621.391.1+519.72 Received: 22.10.2012
Citation:
A. S. Holevo, M. E. Shirokov, “On classical capacities of infinite-dimensional quantum channels”, Probl. Peredachi Inf., 49:1 (2013), 19–36; Problems Inform. Transmission, 49:1 (2013), 15–31
Citation in format AMSBIB
\Bibitem{HolShi13}
\by A.~S.~Holevo, M.~E.~Shirokov
\paper On classical capacities of infinite-dimensional quantum channels
\jour Probl. Peredachi Inf.
\yr 2013
\vol 49
\issue 1
\pages 19--36
\mathnet{http://mi.mathnet.ru/ppi2099}
\transl
\jour Problems Inform. Transmission
\yr 2013
\vol 49
\issue 1
\pages 15--31
\crossref{https://doi.org/10.1134/S003294601301002X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000317746000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876271912}
Linking options:
http://mi.mathnet.ru/eng/ppi2099 http://mi.mathnet.ru/eng/ppi/v49/i1/p19
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
A. S. Holevo, “Gaussian classical-quantum channels: gain from entanglement-assistance”, Problems Inform. Transmission, 50:1 (2014), 1–14
-
M. E. Shirokov, “Criteria for equality in two entropic inequalities”, Sb. Math., 205:7 (2014), 1045–1068
-
A. S. Holevo, M. E. Shirokov, “On the Gain of Entanglement Assistance in the Classical Capacity of Quantum Gaussian Channels”, Math. Notes, 97:6 (2015), 974–977
-
M. E. Shirokov, “Measures of correlations in infinite-dimensional quantum systems”, Sb. Math., 207:5 (2016), 724–768
-
M. E. Shirokov, A. S. Holevo, “On lower semicontinuity of the entropic disturbance and its applications in quantum information theory”, Izv. Math., 81:5 (2017), 1044–1060
-
M. E. Shirokov, “On the energy-constrained diamond norm and its application in quantum information theory”, Problems Inform. Transmission, 54:1 (2018), 20–33
-
M. M. Wilde, H. Qi, “Energy-constrained private and quantum capacities of quantum channels”, IEEE Trans. Inf. Theory, 64:12 (2018), 7802–7827
-
M. E. Shirokov, “Uniform finite-dimensional approximation of basic capacities of energy-constrained channels”, Quantum Inf. Process., 17:12 (2018), 322
-
N. Davis, M. E. Shirokov, M. M. Wilde, “Energy-constrained two-way assisted private and quantum capacities of quantum channels”, Phys. Rev. A, 97:6 (2018), 062310
-
Oskouei S.Kh., Mancini S., Wilde M.M., “Union Bound For Quantum Information Processing”, Proc. R. Soc. A-Math. Phys. Eng. Sci., 475:2221 (2019), 20180612
-
Becker S., Datta N., “Convergence Rates For Quantum Evolution and Entropic Continuity Bounds in Infinite Dimensions”, Commun. Math. Phys., 374:2 (2020), 823–871
|
Number of views: |
This page: | 384 | Full text: | 84 | References: | 30 | First page: | 8 |
|