RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2003, Volume 39, Issue 1, Pages 134–165 (Mi ppi210)  

This article is cited in 2 scientific papers (total in 3 papers)

On the Role of the Law of Large Numbers in the Theory of Randomness

An. A. Muchnik, A. L. Semenov


Abstract: In the first part of this article, we answer Kolmogorov's question (stated in 1963 in [1]) about exact conditions for the existence of random generators. Kolmogorov theory of complexity permits of a precise definition of the notion of randomness for an individual sequence. For infinite sequences, the property of randomness is a binary property, a sequence can be random or not. For finite sequences, we can solely speak about a continuous property, a measure of randomness. Is it possible to measure randomness of a sequence $t$ by the extent to which the law of large numbers is satisfied in all subsequences of $t$ obtained in an “admissible way”? The case of infinite sequences was studied in [2]. As a measure of randomness (or, more exactly, of nonrandomness) of a finite sequence, we consider the specific deficiency of randomness $\delta$ (Definition 5). In the second part of this paper, we prove that the function $\delta/\ln(1/\delta)$ characterizes the connections between randomness of a finite sequence and the extent to which the law of large numbers is satisfied.

Full text: PDF file (3304 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2003, 39:1, 119–147

Bibliographic databases:

UDC: 621.391.1:519.2

Citation: An. A. Muchnik, A. L. Semenov, “On the Role of the Law of Large Numbers in the Theory of Randomness”, Probl. Peredachi Inf., 39:1 (2003), 134–165; Problems Inform. Transmission, 39:1 (2003), 119–147

Citation in format AMSBIB
\Bibitem{MucSem03}
\by An.~A.~Muchnik, A.~L.~Semenov
\paper On the Role of the Law of Large Numbers in the
Theory of Randomness
\jour Probl. Peredachi Inf.
\yr 2003
\vol 39
\issue 1
\pages 134--165
\mathnet{http://mi.mathnet.ru/ppi210}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2101670}
\zmath{https://zbmath.org/?q=an:1078.60005}
\transl
\jour Problems Inform. Transmission
\yr 2003
\vol 39
\issue 1
\pages 119--147
\crossref{https://doi.org/10.1023/A:1023638717091}


Linking options:
  • http://mi.mathnet.ru/eng/ppi210
  • http://mi.mathnet.ru/eng/ppi/v39/i1/p134

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. K. Yu. Gorbunov, “Estimation of the Number of Elements in a Covering of an Arbitrary Randomness Test by Frequency Tests”, Problems Inform. Transmission, 43:1 (2007), 48–56  mathnet  crossref  mathscinet  isi  elib
    2. S. I. Adian, A. L. Semenov, V. A. Uspenskii, “Andrei Al'bertovich Muchnik (obituary)”, Russian Math. Surveys, 62:4 (2007), 775–779  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. Uspensky V.A., V'yugin V.V., “Development of the algorithmic information theory in Russia”, Journal of Communications Technology and Electronics, 56:6 (2011), 739–747  crossref  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:491
    Full text:144
    References:39

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020