RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2013, Volume 49, Issue 1, Pages 66–82 (Mi ppi2103)  

This article is cited in 3 scientific papers (total in 3 papers)

Communication Network Theory

Help desk center operating model as a two-phase queueing system

S. A. Dudin, O. S. Dudina

Belarusian State University, Minsk

Abstract: We consider a two-phase queueing system with a Markovian arrival flow as an operating model for a help desk center. The first phase is a multiserver system with a finite buffer and impatient customers. After getting service in the first phase, a customer either enters the second phase with an infinite buffer or quits the system. Service times at the first and second stages have phase-type distributions with different parameters. We obtain an existence condition for a stationary regime of the system. An algorithm for computing stationary probabilities and basic performance characteristics of the system is presented. Laplace-Stieltjes transforms for the distributions of sojourn and waiting times in the first and second phases are found. Results of numerical experiments are presented. Optimization problem for the system operation is solved numerically.

Full text: PDF file (316 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2013, 49:1, 58–72

Bibliographic databases:

UDC: 621.391.1+519.2
Received: 03.05.2012
Revised: 05.10.2012

Citation: S. A. Dudin, O. S. Dudina, “Help desk center operating model as a two-phase queueing system”, Probl. Peredachi Inf., 49:1 (2013), 66–82; Problems Inform. Transmission, 49:1 (2013), 58–72

Citation in format AMSBIB
\Bibitem{DudDud13}
\by S.~A.~Dudin, O.~S.~Dudina
\paper Help desk center operating model as a~two-phase queueing system
\jour Probl. Peredachi Inf.
\yr 2013
\vol 49
\issue 1
\pages 66--82
\mathnet{http://mi.mathnet.ru/ppi2103}
\transl
\jour Problems Inform. Transmission
\yr 2013
\vol 49
\issue 1
\pages 58--72
\crossref{https://doi.org/10.1134/S0032946013010067}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000317746000006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876245086}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2103
  • http://mi.mathnet.ru/eng/ppi/v49/i1/p66

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. M. Vishnevskii, A. N. Dudin, “Queueing systems with correlated arrival flows and their applications to modeling telecommunication networks”, Autom. Remote Control, 78:8 (2017), 1361–1403  mathnet  crossref  isi  elib
    2. N. A. Kuznetsov, D. V. Myasnikov, K. V. Semenikhin, “Optimization of Two-Phase Queuing System and Its Application to the Control of Data Transmission Between Two Robotic Agents”, J. Commun. Technol. Electron., 62:12 (2017), 1484–1498  crossref  isi  scopus
    3. N. A. Kuznetsov, D. V. Myasnikov, K. V. Semenikhin, “Two-Phase Queueing System Optimization in Applications to Data Transmission Control”, 3Rd International Conference Information Technology and Nanotechnology ITNT-2017, Procedia Engineering, 201, eds. V. Soifer, N. Kazanskiy, O. Korotkova, S. Sazhin, Elsevier Science BV, 2017, 567–577  crossref  isi  scopus
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:269
    Full text:76
    References:26
    First page:23

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020