RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Probl. Peredachi Inf., 2013, Volume 49, Issue 2, Pages 3–16 (Mi ppi2105)  

This article is cited in 2 scientific papers (total in 2 papers)

Information Theory

Some properties of Rényi entropy over countably infinite alphabets

M. Kovačević, I. Stanojević, V. Šenk

University of Novi Sad, Serbia

Abstract: We study certain properties of Rényi entropy functionals $H_\alpha(\mathcal P)$ on the space of probability distributions over $\mathbb Z_+$. Primarily, continuity and convergence issues are addressed. Some properties are shown to be parallel to those known in the finite alphabet case, while others illustrate a quite different behavior of the Rényi entropy in the infinite case. In particular, it is shown that for any distribution $\mathcal P$ and any $r\in[0,\infty]$ there exists a sequence of distributions $\mathcal P_n$ converging to $\mathcal P$ with respect to the total variation distance and such that $\lim_{n\to\infty}\lim_{\alpha\to1+} H_\alpha(\mathcal P_n)=\lim_{\alpha\to1+}\lim_{n\to\infty}H_\alpha(\mathcal P_n)+r$.

Full text: PDF file (234 kB)
References: PDF file   HTML file

English version:
Problems of Information Transmission, 2013, 49:2, 99–110

Bibliographic databases:

UDC: 621.391.1+519.72
Received: 03.12.2012
Revised: 30.01.2013

Citation: M. Kovačević, I. Stanojević, V. Šenk, “Some properties of Rényi entropy over countably infinite alphabets”, Probl. Peredachi Inf., 49:2 (2013), 3–16; Problems Inform. Transmission, 49:2 (2013), 99–110

Citation in format AMSBIB
\Bibitem{KovStaSen13}
\by M.~Kova{\v{c}}evi{\'c}, I.~Stanojevi{\'c}, V.~{\v S}enk
\paper Some properties of R\'enyi entropy over countably infinite alphabets
\jour Probl. Peredachi Inf.
\yr 2013
\vol 49
\issue 2
\pages 3--16
\mathnet{http://mi.mathnet.ru/ppi2105}
\transl
\jour Problems Inform. Transmission
\yr 2013
\vol 49
\issue 2
\pages 99--110
\crossref{https://doi.org/10.1134/S0032946013020014}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000321870600001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880416990}


Linking options:
  • http://mi.mathnet.ru/eng/ppi2105
  • http://mi.mathnet.ru/eng/ppi/v49/i2/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Courtade T.A., Verdu S., “Cumulant Generating Function of Codeword Lengths in Optimal Lossless Compression”, 2014 IEEE International Symposium on Information Theory (Isit), IEEE International Symposium on Information Theory, IEEE, 2014, 2494–2498  isi
    2. Yu. Sakai, “Generalized Fano-type inequality for countably infinite systems with list-decoding”, Proceedings of 2018 International Symposium on Information Theory and Its Applications (ISITA), IEEE, 2018, 727–731  crossref  isi
  • Проблемы передачи информации Problems of Information Transmission
    Number of views:
    This page:167
    Full text:34
    References:21
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020